Синтез катализаторов Pt(WC) для реакции электрохимического выделения водорода методом нанесения платины в условиях разомкнутой цепи
- Авторы: Ханин Д.А.1, Кузнецов В.В.2,3, Махно Д.Д.2, Душик В.В.3, Рубан Е.А.2,3,4
-
Учреждения:
- Национальный исследовательский ядерный университет “МИФИ”
- Российский химико-технологический университет им. Д.И. Менделеева
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
- Выпуск: Том 60, № 12 (2024): Спецвыпуск “Электрохимия-2023”, часть 3
- Страницы: 807–819
- Раздел: Статьи участников Всероссийской конференции “Электрохимия-2023” (Москва, 23–26 октября 2023 года)
- URL: https://kazanmedjournal.ru/0424-8570/article/view/677974
- DOI: https://doi.org/10.31857/S0424857024120011
- EDN: https://elibrary.ru/NNJOBA
- ID: 677974
Цитировать
Аннотация
Pt(WC1–x)/Cu-электроды получены осаждением платины на поверхность карбидов вольфрама в условиях отсутствия внешней поляризации. Слой карбидов вольфрама толщиной ~20 мкм был предварительно сформирован на поверхности медных пластин термолизом газовой смеси WF6 + H2 + C3H8. В процессе бестокового осаждения на поверхности карбидов вольфрама происходило образование наночастиц платины. Источником электронов для восстановления соединений Pt(II) служило окисление поверхностных слоев карбидов вольфрама. Морфология полученных электродов была исследована методом сканирующей электронной микроскопии (СЭМ), химический состав поверхностных слоев – рентгеновской фотоэлектронной спектроскопией (РФЭС), а фазовый состав – рентгенофазовым анализом (РФА). Нанесение небольших количеств платины (0.002–0.24 мг Pt/см2 геометрической поверхности электрода) приводило к значительному ускорению реакции электрохимического выделения водорода (РВВ). Для образца с загрузкой платины 0.24 мг/см2 каталитическая активность приближалась к активности Pt/Pt-электрода. Определены вольт-амперные характеристики РВВ на полученных Pt(WC1–x)/Cu-электродах и высказано предположение, что выделение водорода протекает на каталитически активных наночастицах платины.
Полный текст

Об авторах
Д. А. Ханин
Национальный исследовательский ядерный университет “МИФИ”
Email: vitkuzn1@mail.ru
Россия, Москва
В. В. Кузнецов
Российский химико-технологический университет им. Д.И. Менделеева; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Автор, ответственный за переписку.
Email: vitkuzn1@mail.ru
Россия, Москва; Москва
Д. Д. Махно
Российский химико-технологический университет им. Д.И. Менделеева
Email: vitkuzn1@mail.ru
Россия, Москва
В. В. Душик
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: vitkuzn1@mail.ru
Россия, Москва
Е. А. Рубан
Российский химико-технологический университет им. Д.И. Менделеева; Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
Email: vitkuzn1@mail.ru
Россия, Москва; Москва; Черноголовка
Список литературы
- Тарасевич, М.Р. Электрокатализ для топливных элементов. Альтернатив. энергетика и экология. 2012. № 1 (105). C. 56. [Tarasevich, M.R., Electrocatalysis for fuel cells, Al'ternativnaya Energetika i Ekologiya (in Russian), 2013, no. 1 (105), p. 56.]
- Seh, Zh.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, Ib, Nørskov, J.K., and Jaramillo, Th.F., Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 2017, vol. 355, p. 146.
- Obodo, K.O., Ouma, C.N.M., and Bessarabov, D., Low-temperature water electrolysis, in Power to Fuel: How to Speed Up a Hydrogen Economy, Spazzafumo, G., Ed, Amsterdam: Elsevier Inc., 2021, p.17. https://doi.org/10.1016/B978-0-12-822813-5.00003-5
- Kumar, S. Sh. and Lim, H., An overview of water electrolysis technologies for green hydrogen production, Energy Rep., 2022, vol. 8, p. 13793.
- Valenti, G., Boni, A., Melchionna, M., Cargnello, M., Nasi, L., Bertoni, G., Gorte, R.J., Marcaccio, M., Rapino, S., Bonchio, M., Fornasiero, P., Prato, M., and Paolucci, F., Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution, Natur. Commun., 2016, vol. 7, article number 13549.
- International Renewable Energy Agency (IRENA). Hydrogen. Overview (https://www.irena.org/Energy-Transition/Technology/Hydrogen).
- Lee, J.E., Jeon, K.-J., Show, P.L., Lee, I.H., Jung, S.-Ch., Choi, Y.L., Rhee, G.H., Lin, K.-Y. A., and Park, Y.-K., Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts, Fuel, 2022, vol. 308, article number 122048.
- Sinitsyn, P.A., Kuznetsov, V.V., Filatova, E.A., and Levchenko, S.V., Ruddlesden–Popper Oxides LaSrM11–xM2xO4±δ (M1, M2—Fe, Co, Ni) Synthesized by the spray-pyrolysis method as promising electrocatalysts for oxygen evolution reaction, Energies, 2022, vol. 15, article number 8315.
- McCrory, Ch.C.L., Jung, S., Ferrer, I.M., Chatman, Sh.M., Peters, J.S., and Jaramillo, Th.F., Benchmarking hydrogen evolving reaction and oxygen evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc., 2015, vol. 137, p. 4347.
- Акар, К., Динсер, И. Анализ и оценка комбинированной фотоэлектрохимической системы непрерывного типа для получения водорода. Альтернатив. энергетика и экология. 2016. № 9–10 (197–198). С. 66. [Akar, K. and Dinser, I., Analysis and evaluation of a continuous type combined photoelectrochemical system for hydrogen production, Al'ternativnaya Energetika i Ekologiya (in Russian), 2016, no. 9–10 (197–198), p. 66.]
- Photoelectrochemical Hydrogen Production, van de Krol, R. and Grätzel, M., Eds, Berlin: Springer Science+Business Media, 2012. 321 p.
- Bourguignon, C., Moinel, A., Huet, A., Kervella, Y., Windle, Ch.D., Massin J., Artero, V., Chavarot-Kerlidou, M., and Demadrille, R., Photoelectrochemical Hydrogen Production by a Cobalt Tetrapyridyl Catalyst Using Push-Pull Dye-Sensitized NiO Photocathodes, Adv. Energy Mater., 2023, vol. 4, article number 2300095.
- Kumar, M., Meena, B., Subramanyam, P., Suryakala, D., and Subrahmanyam, Ch., Recent trends in photoelectrochemical water splitting: the role of cocatalysts, NPG Asia Mater., 2022, vol. 14, article number 88.
- Trasatti, S., Electrochemical theory. Hydrogen evolution, in Reference module in chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Electrochemical Power Sources, Reedijk, J., Ed., Amsterdam: Elsevier Science Ltd., 2009, p. 41. https://doi.org/10.1016/B978-044452745-5.00022-8
- Guo, F., Macdonald, Th.J., Sobrido, A.J., Liu, L., Feng, J., and He, G., Recent advances in ultralow-Pt-loading electrocatalysts for the efficient hydrogen evolution, Adv. Sci., 2023, vol. 10, article number 2301098.
- Devadas, B., Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials, Electrochem. Commun., 2016, vol. 72, p. 135.
- Xiao, Yu.-X., Ying, J., Liu, H.-W., and Yang, X.-Yu., Pt-C interactions in carbon-supported Pt-based electrocatalysts, Front. Chem. Sci. Eng., 2023, vol. 17, p. 1677.
- Qin, X., Ola, O., Zhao, J., Yang, Z., Tiwari, S.K., Wang, N., and Zhu, Y., Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction, Nanomaterials, 2022, vol. 12, article number 1806.
- Scremin, J., Joviano dos Santos, I.V., Hughes, J.P., Ferrari, A.G.-M., Valderrama, E., Zheng, W., Zhong, X., Zhao, X., Sartori, E.J.M., Crapnell, R.D., Rowley-Neale, S.J., and Banks, C.E., Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction, Nanoscale, 2020, vol. 12, p. 18214.
- Арсатов, А.В., Добровольский, Ю.А. Неуглеродные носители катализаторов для низкотемпературных топливных элементов. Альтернатив. энергетика и экология, 2009. № 8 (76). C. 162. [Arsatov, A.V. and Dobrovolskiy, Y.A., Non-carbon catalyst carriers for low-temperature fuel cells, Al'ternativnaya Energetika i Ekologiya (in Russian), 2009, no. 8 (76), p. 162.]
- Samad, Sh., Loh, K. Sh., Wong, W.Y., Lee, T.K., Sunarso, J., Chong, S.T., and Daud, W.R.W., Carbon and non-carbon support materials forplatinum-based catalysts in fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, p. 7823.
- Zhang, X., Sa, R., Yang, Sh., Zhou, F., Jiang, Zh., and Wang, R., A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects, Nanoenergy, 2020, vol. 75, article number 104981.
- Gao, Q., Zhang, W., Shi, Zh., Yang, L., and Tang, Y., Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution, Adv. Mater., 2019, vol. 31, article number 1802880.
- Yang, X.G. and Wang C.Y., Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells, Appl. Phys.Lett., 2005, vol. 86, article number 224104.
- Huang, J., Hong, W., Li, J., Wang, B., and Liu, W., High-performance tungsten carbide electrocatalysts for the hydrogen evolution reaction, Sustain. Energy Fuels, 2020, vol. 4, p. 1078.
- Sohail, U., Pervaiz, E., Ali, M., Khosa, R., Shakoor, A., and Abdullah, U., Role of tungsten carbide (WC) and its hybrids in electrochemical water splitting application – A comprehensive review, FlatChem, 2022, vol. 35, article number 100404.
- Han, N., Yang, K.R., Lu, Zh., Li, Y., Xu, W., Gao, T., Cai, Zh., Zhang, Y., Batista, V.S., Liu, W., and Sun X., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid, Natur. Commun., 2018, vol. 924, article number 924.
- Brankovic, S.R., Wang, J.X., and Adžic, R.r., Metal monolayer deposition by replacement of metal adlayers on electrode surfaces, Surf. Sci., 2001, vol. 474, p. L173.
- Alia, S.M., Yan, Y.S., and Pivovar, B.S., Galvanic displacement as a route to highly active and durable extended surface electrocatalysts, Catal. Sci. Technol., 2014, vol. 4, p. 3589.
- Kong, X., Wu, H.-T., Lu, K., Zhang, X., Zhu, Y., and Lei, H., Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures, ACS Appl. Mater. Interfaces, 2023, vol. 15, p. 41205.
- Podlovchenko, B.I. and Maksimov, Yu.M., Peculiarities of surface layer formation at galvanic displacement of lead by platinum. Activity of Pd0(Pb) composites in FAOR, J. Electroanal. Chem., 2019, vol. 840, p. 376.
- Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu Core–Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.
- Ercolano, G., Farina, F., Stievano, L., Jones, D.J., Rozièrea, J., and Cavaliere, S., Preparation of Ni@Pt core@shell conformal nanofibre oxygen reduction electrocatalysts via microwave-assisted galvanic displacement, Catal. Sci. Technol., 2019, vol. 9, p. 6920.
- Kuznetsov, V.V., Podlovchenko, B.I., Batalov, R.S., and Filatova, E.A., nRu⋅mPt⋅(Hx-3n-2mMoO3) composite prepared by surface redox reaction as a highly active electrocatalyst for carbon monoxide and methanol oxidation, Electrochim. Acta, 2019, vol. 300, p. 274.
- Кузнецов, В.В., Подловченко, Б.И., Фролов, К.В., Волков, М.А., Ханин, Д.А. Использование гальванического вытеснения для синтеза катализаторов Pt/карбид (Mo2C, ZrC, NbC), высокоактивных в реакции выделения водорода. Электрохимия. 2022. Т. 58. С. 644. [Kuznetsov, V.V., Podlovchenko, B.I., Frolov, K.V., Volkov, M.A., and Khanin, D.A., The Use of Galvanic Displacement for Synthesizing Pt/Carbide (Mo2C, ZrC, NbC) Catalysts Highly Active in the Hydrogen Evolution Reaction, Russ. J. Eleсtrochem., 2022, vol. 58, p. 896.]
- Kuznetsov, V.V., Podlovchenko, B.I., Frolov, K.V., Volkov, M.A., and Khanin D.A., A new promising Pt(Mo2C) catalyst for hydrogen evolution reaction prepared by galvanic displacement reaction, J. Solid State Electrochem., 2022, vol. 26, p. 2183.
- Сыркин, В.Г. CVD-метод. Химическая парофазная металлизация, М.: Наука, 2000, 496 с. [Syrkin, V.G., CVD method. Chemical vapor deposition (in Russian), Moscow: Nauka, 2000. 496 p.]
- Dushik, V.V., Rozhanskii, N.V., Lifshits, V.O., Rybkina, T.V., and Kuzmin V.P., The formation of tungsten and tungsten carbides by CVD synthesis and the proposed mechanism of chemical transformations and crystallization processes, Mater. Lett., 2018, vol. 228, p. 164.
- Курлов, А.С., Гусев, А.И. Фазовые равновесия в системе W-C и карбиды вольфрама. Успехи химии. 2006. Т. 75. № 7. С. 687. [Kurlov, A.S. and Gusev, A.I., Phase equilibria in the W-C system and tungsten carbides, Russ. Chem. Rev., 2006, vol. 75, p. 617.]
- Williamson, E.H., Gee, M., Robertson, D., Watts, J.F., Whiting, M.J., and Yeomans, J.A., Wear performance and characterization of coatings for nuclear applications: WC-(W, Cr)2C-Ni and hard chromium plate, Wear, 2019, vol. 430–431, p. 169.
- Weidman, M.C., Esposito, D.V., Hsu, T.-Ch., and Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range, J. Power Sources, 2012, vol. 202, p. 11.
- Shirley, D.A., High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972, vol. 5, p. 4709.
- Синтез комплексных соединений металлов платиновой группы. Справочник, под ред. И.И. Черняева. М.: Наука, 1964. С. 8–10. [Synthesis of complex compounds of platinum group metals (in Russian), Moscow: Nauka, 1964. p. 8–10.]
- Hall, M.D., Daly, H.L., Zhang, J.Z., Zhang, M., Alderden, R.A., Pursche, D., Foranc, G.J., and Hambley, T.W., Quantitative measurement of the reduction of platinum(IV) complexes using X-ray absorption near-edge spectroscopy (XANES), Metallomics, 2012, vol. 4, p. 568.
- Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, Pure Appl. Chem., 1991, vol. 63, p. 711.
- Łukaszewski, M., Soszko, M., and Czerwiński, A., Electrochemical methods of real surface frea determination of noble metal electrodes – an overview, Int. J. Electrochem. Sci., 2016, vol. 11, p. 4442.
- Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solutions, New York: Marcel Dekker, 1985. 848 p.
- Nave, M.I. and Kornev, K.G., Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data, MMTA, 2017, vol. 48A, p. 1414.
- Термические константы веществ: Вып. 1–10/Отв. ред. В.П. Глушко. М.: ВИНИТИ, 1965–1982. Электронная база данных: https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html. [Thermal constants of substances: Vol. 1–10, Glushko, V.P., Ed., Moscow: VINITI, 1965–1982. Electronic database: https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html].
- Göhl, D., Mingers, A.M., Geiger, S., Schalenbach, M, Cherevko, S., Knossalla, J., Jalalpoor, D., Schüth, F., Mayrhofer, K.J.J., and Ledendecker, M., Electrochemical stability of hexagonal tungsten carbide in the potential window of fuel cells and water electrolyzers investigated in a half-cell configuration, Electrochim. Acta, 2018, vol. 270, p. 70.
- Электронная база данных https://srdata.nist.gov/xps/QueryByElmType/Pt/PE, https://srdata.nist.gov/xps/QueryByElmType/W/PE. [Electronic database https://srdata.nist.gov/xps/QueryByElmType/Pt/PE, https://srdata.nist.gov/xps/QueryByElmType/W/PE].
- Смирнов, М.Ю., Калинкин, А.В., Вовк, Е.И., Бухтияров, В.И. Анализ состояния окисления частиц платины в нанесенных катализаторах методом двойного дифференцирования линий РФЭС. Журн. структурной химии. 2016. Т. 57(6). С. 76. [Smirnov, M.Y., Kalinkin, A.V., Vovk, E.I., and Bukhtiyarov, V.I., Analysis of oxidation state of platinum particles in supported catalysts by double differentiation of XPS lines, J. Struct. Chem., 2016, vol. 57(6), p. 1127.]
- Beden, B., Lamy, C., Tacconi, N.R., and Arvia, A.J., The electrooxidation of CO: a test reaction in electrocatalysis, Electrochim. Acta, 1990, vol. 35, p. 691.
- Jeon, M.K., Daimon, H., Lee, K.R., Nakahara, A., and Woo, S.I., CO tolerant Pt/WC methanol electro-oxidation catalyst, Electrochem. Commun., 2007, vol. 9, p. 2692.
- Vidaković, T., Christov, M., and Sundmacher, K., A method for rough estimation of the catalyst surface area in a fuel cell, J. Appl. Electrochem., 2009, vol. 39, p. 213.
- Rudi, S., Cui, Ch., Gan, L., and Strasser, P., Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.
- Shao, M., Odell, J.H., Choi, S.-I., and Xia, Y., Electrochemical surface area measurements of platinum- and palladium-based nanoparticles, Electrochem. Commun., 2013, vol. 31, p. 46.
- Breiter, M.W., Comparison of CO adsorption on smooth platinum metal electrodes in sulfuric acid solutions, J. Electroanal. Chem., 1984, vol. 180, p. 25.
- Huang, J., Hong, W., Li, J., Wang, B., and Liu, W., High-performance tungsten carbide electrocatalysts for hydrogen evolution reaction, Sustain. Energy Fuels, 2020, vol. 4, p. 1078.
- Zóltowski, P., Hydrogen evolution reaction on smooth tungsten carbide electrodes, Electrochim. Acta, 1980, vol. 25, p. 1547.
Дополнительные файлы
