Gas permeability of modified perfluorinated sulfonic acid membranes when operating in a proton exchange membrane fuel cell
- Autores: Lyapishev K.M.1, Falina I.V.1, Timofeev S.V.2, Kononenko N.A.1
-
Afiliações:
- Kuban State University
- JSC Plastpolymer
- Edição: Volume 61, Nº 4 (2025)
- Páginas: 210-220
- Seção: Articles
- URL: https://kazanmedjournal.ru/0424-8570/article/view/685699
- DOI: https://doi.org/10.31857/S0424857025040022
- EDN: https://elibrary.ru/GBRKPQ
- ID: 685699
Citar
Resumo
The gas permeability of perfluorinated proton-exchange MF-4SC membranes modified with an inert fluoropolymer and zirconium hydrogen phosphate was studied under operating conditions of a proton exchange membrane fuel cell using electrochemical methods of cyclic and staircase voltammetry. The adequacy of the methods used for estimating the hydrogen crossover current was demonstrated using membranes of different thicknesses. The relationship between the membrane permeability for hydrogen and the diffusion permeability for the electrolyte solution was studied for membranes modified with zirconium hydrogen phosphate. The optimal content of the inert fluoropolymer and zirconium hydrogen phosphate in the proton-exchange perfluorinated MF-4SC membrane was found, which ensures an increase in the power characteristics of the fuel cell and reduced hydrogen permeability.
Texto integral

Sobre autores
K. Lyapishev
Kuban State University
Email: irina_falina@mail.ru
Rússia, Stavropolskaya st., 149, Krasnodar, 350040
I. Falina
Kuban State University
Autor responsável pela correspondência
Email: irina_falina@mail.ru
Rússia, Stavropolskaya st., 149, Krasnodar, 350040
S. Timofeev
JSC Plastpolymer
Email: irina_falina@mail.ru
Rússia, Polyustrovsky ave., 32, Saint-Petersburg, 195197
N. Kononenko
Kuban State University
Email: kononenk@chem.kubsu.ru
Rússia, Stavropolskaya st., 149, Krasnodar, 350040
Bibliografia
- Zhang, Y., Wang, J., and Yao, Z., Recent development of fuel cell core components and key materials: a review, Energies, 2023, vol. 16, p. 2099.
- Zhao, J., Guo, H., Xing Y., and Ping, S., A review on the sealing structure and materials of fuel-cell stacks, Clean Energy, 2023, vol. 7, no. 1, p. 59.
- Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical power sources: batteries, fuel cells, and supercapacitors, John Wiley & Sons Inc. Publisher N.J., 2015. 400 p.
- Bodkhe, R.G., Shrivastava, R.L., Soni, V.K., and Chadge, R.B., A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development, Intern. J. Electrochem. Sci., 2023, vol. 18, p. 100108.
- Scott, K. and Shukla, A.K., Polymer electrolyte membrane fuel cells: Principles and advances, Reviews in Environmental Science and Bio/Technology, 2004, vol. 3, p. 273.
- Tellez-Cruz, M.M., Escorihuela, J., Solorza-Feria, O., and Compan, V., Proton exchange membrane fuel cells (PEMFCs): advances and challenges, Polymers, 2021, vol. 13, p. 3064.
- Jamal, T., Shafiullah, G.M., Dawood, F., and Kaur, A., Fuelling the future: An in-depth review of recent trends, challenges and opportunities of hydrogen fuel cell for a sustainable hydrogen economy, Energy Reports, 2023, vol. 10, p. 2103.
- Филиппов, С., Голодницкий, А., Кашин, А. Топливные элементы и водородная энергетика. Энергетическая политика. 2020. № 11 (153). С. 28. [Filippov, S., Golodnitsky, A., and Kashin, A., Fuel cells and hydrogen energy, Energeticheskaya politika (in Russian), 2020, no. 11 (153), p. 28.]
- Yuan, H., Dai, H., Wei, X., and Ming, P., Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times, Chem. Eng. J., 2021, vol. 418, p. 129358.
- Ren, W., Shen, J., Li, X., and Du, C., A Review of Fuel Cell System Technology: From Fuel Cell Stack to System Integration, Intern. J. Automotive Manufacturing and Materials, 2022, vol. 1, no. 1, p. 5.
- Wang, Y., Yuan, H., Martinez, A., and Hong P., Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives, Adv. in Appl. Energy, 2021, vol. 2, p. 100011.
- Трапезников, А.Н., Шайхатдинов, Ф.А., Хохлов, А.А., Агарков, Д.А., Бредихин, С.И., Чичиров, А.А., Абаева, Е. Обзор характеристик топливных элементов, изготавливаемых и применяемых на автомобильном транспорте в России. Успехи в химии и химической технологии. 2020. Т. XXXIV. № 12. С. 43. [Trapeznikov, A.N., Shaihatdinov, F.A., Khokhlov, A.A., Agarkov, D.A., Bredihin, S.I., Chichirov, A.A., and Abaeva, E., Review of the characteristics of fuel cells manufactured and used in road transport in Russia, Uspekhi v khimii i khimicheskoy tekhologii (in Russian), 2020, vol. XXXIV, no. 12, p. 43.]
- García-Salaberri, P.A., Proton exchange membranes for polymer electrolyte fuel cells: An analysis of perfluorosulfonic acid and aromatic hydrocarbon ionomers, Sustainable Mater. and Technol., 2023, vol. 38, p. e00727.
- Ismail, M.S., Hughes, K.J., Ingham, D.B., Ma, L., and Pourkashanian, M., Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells, Appl. Energy, 2012, vol. 95, p. 50.
- Xiao, B., Fan, J., and Ding, F., A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells, Electrochim. Acta, 2014, vol. 134, p. 222.
- Shou, D., Tang, Y., and Ye, L., Effective permeability of gas diffusion layer in proton exchange membrane fuel cells, Intern. J. Hydrogen Energy, 2013, vol. 38, p. 10519.
- Liang, M., Liu, Y., Xiao, B., Yang, S., Wang, Z., and Han, H., An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells, Intern. J. Hydrogen Energy, 2018, vol. 43, p. 17880.
- Reshetenko, T.V., St-Pierre, J., and Rocheleau, R., Effects of local gas diffusion layer gas permeability variations on spatial proton exchange membrane fuel cells performance, J. Power Sources, 2013, vol. 241, p. 597.
- Ozden, A., Shahgaldi, S., Li, X., and Hamdullahpur, F., Degradations in the surface wettability and gas permeability characteristics of proton exchange membrane fuel cell electrodes under freeze-thaw cycles: Effects of ionomer type, Intern. J. Hydrogen Energy, 2020, vol. 45, p. 29892.
- Jung, A., Kong, I.M., Yun, C.Y., and Kim, M.S., Characteristics of hydrogen crossover through pinhole in polymer electrolyte membrane fuel cells, J. Membrane Sci., 2017, vol. 523, p. 138.
- Xin, Z., Yanyi, Z., and Xiaobing, W., Research on testing and evaluation technology of proton exchange membrane for fuel cell, Energy Reports, 2023, vol. 10, p. 1943.
- Fahr, S., Engel, F.K., Rehfeldt, S., Perchel, A., and Klein, H., Overview and evaluation of crossover phenomena and mitigation measures in proton exchange membrane (PEM) electrolysis, Intern. J. Hydrogen Energy, 2024, vol. 68, p. 705.
- Castelino, P., Shah, A., Gokhale, M., Jayarama, A., Suresh, K.V., Fernandes, P., Prabhu, S., Duttagupta, S., and Pinto, R., Optimum hydrogen flowrates and membrane-electrode clamping pressure in hydrogen fuel cells with dual-serpentine flow channels, Materials Today: Proceedings, 2021, vol. 35, no. 3, p. 412.
- Baik, K.D., Kim, S.I., Hong, B.K., Han, K., and Kim, M.S., Effects of gas diffusion layer structure on the open circuit voltage and hydrogen crossover of polymer electrolyte membrane fuel cells, Intern. J. Hydrogen Energy, 2011, vol. 36, no. 16, p. 9916.
- Hwang, B.C., Oh, S.H., Lee, M.S., Lee, D.H., and Park, K.P., Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test, Korean J. Chem. Engineering, 2018, vol. 35, p. 2290.
- Broka, K. and Ekdunge, P., Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem., 1997, vol. 27, p. 117.
- Huachi, X., Pucheng, P., and Ziyao, W., Hydrogen crossover current and electronic resistance detection in a PEM fuel cell, J. Tsinghua Univer., 2016, vol. 56, no. 6, p. 587.
- Francia, C., Ijery, V., Specchia, S., and Spinelli, P., Estimation of hydrogen crossover through Nafion membranes in PEMFCs, J. Power Sources, 2011, vol. 196, p. 1833.
- Brooker, R.P., Rodgers, M.P., Bonville, L.J., Kunz, H.R., Slattery, D.K., and Fenton, J.M., Influence of trace oxygen in low-crossover proton exchange membrane fuel cells, J. Power Sources, 2012, vol. 218, p. 181.
- Pei, P., Wu, Z., Li, Y., Jia, X., Chen, D., and Huang, S., Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell, Appl. Energy, 2018, vol. 215, p. 338.
- Tang, Q., Li, B., Yang, D., Ming, P., Zhang, C., and Wang, Y., Review of hydrogen crossover through the polymer electrolyte membrane, Intern. J. Hydrogen Energy, 2021, vol. 46, p. 22040.
- Li, S., Wei, X., Jiang, S., Yuan, H., Ming, P., Wang, X., and Dai, H., Hydrogen crossover diagnosis for fuel cell stack: An electrochemical impedance spectroscopy based method, Appl. Energy, 2022, vol. 325, p. 119884.
- Schoemaker, M., Misz, U., Beakhaus, P., and Heinzel, A., Evaluation of Hydrogen Crossover through Fuel Cell Membranes, Fuel Cells, 2014, vol. 14, no. 3, p. 412.
- Tang, F., Tang, Z., Yang, Y., Bing, L., Zhang, C., and Ming, P., A general equation for the polarization curves of proton exchange membrane fuel cell under hydrogen crossover current measurement, J. Electroanalyt. Chem., 2023, vol. 937, p. 117425.
- Liu, W. and Zuckerbrod, D., In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells, J. Electrochem. Soc., 2005, vol. 152, no. 6, p. 1165.
- Li, S., Wei, X., Dai, H., Yuan, H., and Ming, P., Voltammetric and galvanostatic methods for measuring hydrogen crossover in fuel cell, iScience, 2022, vol. 25, p. 103576.
- Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., and Ogumi, Z., Gas crossover and membrane degradation in polymer electrolyte fuel cells, Electrochim. Acta, 2006, vol. 51, p. 5746.
- Baik, K.D., Kong, I.M., Hong, B.K., Kim, S.H., and Kim, M.S., Local measurements of hydrogen crossover rate in polymer electrolyte membrane fuel cells, Appl. Energy, 2013, vol. 101, p. 560.
- Jung, A., Oh, J., Han, K., and Kim, M.S., An experimental study on the hydrogen crossover in polymer electrolyte membrane fuel cells for various current densities, Appl. Energy, 2016, vol. 175, p. 212.
- Zhang, H., Li, J., Tang, H., Lin, Y., and Pan, M., Hydrogen crossover through perfluorosulfonic acid membranes with variable side chains and its influence in fuel cell lifetime, Intern. J. Hydrogen Energy, 2014, vol. 39, p. 15989.
- Omrani, R. and Shabani, B., An analytical model for hydrogen and nitrogen crossover rates in proton exchange membrane fuel cells, Intern. J. Hydrogen Energy, 2020, vol. 45, p. 31041.
- Shyu, J.C., Hsueh, K.N., and Tsau, F., Performance of proton exchange membrane fuel cells at elevated temperature, Energy Conversation and Management, 2011, vol. 52, p. 3415.
- Ding, F., Zhan, X., Wei, T., Sun, J., Huang, H., Cui, Y., and Shao, Z., Similarities and differences between internal short-circuit current and hydrogen crossover current in a proton exchange membrane fuel cell, Chem. Eng. J., 2024, vol. 494, p. 153091.
- Baik, K.D., Hong, B.K., and Kim, M.S., Effects of operating parameters on hydrogen crossover rate through Nafion membranes in polymer electrolyte membrane fuel cells, Renewable Energy, 2013, vol. 57, p. 234.
- Zang, L., Hao, L., and Zhu, X., Effect of gas crossover on the cold start process of proton exchange membrane fuel cells, Fuel, 2024, vol. 363, p. 130921.
- Falina, I., Kononenko, N., Timofeev, S., Rybalko, M., and Demidenko, K., Nanocomposite Membranes Based on Fluoropolymers for Electrochemical Energy Sources, Membranes, 2022, vol. 12, p. 935.
- Лютикова, Е.К., Тимофеев, С.В., Боброва, Л.П., Бунина, Л.И., Фатеев, В.Н. Газоплотная модифицированная перфторсульфокатионитовая мембрана и способ ее получения. Пат. RU(11) 2 426 750(13) C2 (Россия). 2009 [Lyutikova, E.K., Timofeev, S.V., Bobrova, L.P., Bunina, L.I., and Fateev, V.N., Gas-tight modified perfluorosulfonic cation exchange membrane and the method for its production, Patent RU(11) 2 426 750(13) C2 (Russia), 2009.]
- Добровольский, Ю.А., Джаннаш, П., Лафит, Б., Беломоина, Н.М., Русанов, А.Л., Лихачев, Д.Ю. Успехи в области протонпроводящих полимерных электролитных мембран. Электрохимия. 2007. Т. 43. С. 515. [Dobrovolsky, Yu.A., Jannasch, P., Lafitte, B., Belomoina, N.M., Rusanov, A.L., and Likhachev, D.Yu., Achievements in the Field of Proton-Conductive Portion Electrolyte Membranes, Russ. J. Electrochem., 2007, vol. 43, p. 489.]
- Шалимов, А.С., Новикова, С.А., Стенина, И.А., Ярославцев, А.Б. Ионный перенос в катионообменных материалах МФ-4СК, модифицированных кислым фосфатом циркония. Журн. неорган. химии. 2006. Т. 51. № 5. С. 767. [Shalimov, A.S., Novikova, S.A., Stenina, I.A., and Yaroslavtsev, A.B., Ion transport in MF-4SK cation-exchange membranes modified with acid zirconium phosphate, Russ. J. Inorganic Chemistry, 2006, vol. 51, no. 5, p. 700.]
- Yang, C., Srinivasan, S., and Bocarsly, A.B., A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes, J. Membrane Sci., 2004, vol. 237, p. 145.
- Costamagna, P., Yang, C., Bocarsly, A.B., and Srinivasan, S., Nafion-115 Zirconium phosphate composite membranes for operation of PEMFCs above 100ºC, Electrochem. Acta, 2002, vol. 47, p. 1023.
- Yang, C., Srinivasan, S., Arico, A.S., Creti, P., Ballio, V., and Antonucci, V., Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. and Solid State Lett., 2001, vol. 4, p. A31.
- Bauer, F. and Willert-Porada, M., Comparison between Nafion and a Nafion zirconium phosphate nano-composite in fuel cell applications, Fuel Cells, 2006, vol. 6, p. 261.
- Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., and Sganappa, M., Novel Nafion-zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity, Electrochim. Acta, 2007, vol. 52, p. 8125.
- Hou, H., Sun, G., Wu, Z., Jin, W., and Xin, Q., Zirconium phosphate/Nafion115 composite membrane for high-concentration DMFC, Intern. J. Hydrogen Energy, 2008, vol. 33, no. 13, p. 3402.
- Apichatachutapan, W., Moore, R.B., and Mauritz, K.A., Asymmetric Nafion/(zirconium oxide) hybrid membranes via in situ sol-gel chemistry, J. Appl. Polymer Sci., 1996, vol. 62, no. 2, p. 417.
- Safronova, E.Yu. and Yaroslavtsev, A.B., Relationship between properties of hybrid ion-exchange membranes and dopant nature, Solid State Ionics, 2013, vol. 251, p. 23.
- Safronova, E.Yu., Prikhno, I.A., Yaroslavtsev, A.B., and Yurkov, G.Yu., Nanocomposite membrane materials based on Nafion and cesium acid salt of phosphotungstic heteropolyacid, Chem. Eng. Transactions, 2015, vol. 43, p. 679.
- Gerasimova, E., Safronova, E., and Ukshe, A., Electrocatalytic and transport properties of hybrid Nafion membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells, Chem. Eng. J., 2016, vol. 305, p. 121.
- Kononenko, N.A, Fomenko, M.A, and Volfkovich, Yu.M., Structure of perfluorinated membranes investigated by method of standard contact porosimetry, Advances in Colloid and Interface Sci., 2015, vol. 222, p. 425.
- Shkirskaya, S., Kononenko, N., and Timofeev, S., Structural and Electrotransport Properties of Perfluorinated Sulfocationic Membranes Modified by Silica and Zirconium Hydrophosphate, Membranes, 2022, vol. 12, p. 979.
- Сафронова, Е.Ю. Материалы на основе модифицированных перфторированных сульфосодержащих мембран с новым комплексом функциональных свойств: Дис. на соискание уч. ст. доктора хим. наук, М., 2023. 286 с. [Safronova, E.Yu., Materials based on modified perfluorinated sulfonic membranes with a new set of functional properties: Dissertation for the degree of Doctor of Chemical Sciences (in Russian), Moscow, 2023. 286 p.]
- Kodir, A., Yim, S.D., Lee, H., Shin, D., and Bae, B., Comprehensive study of hydrogen-crossover reducing agents for polymer electrolyte membranes, J. Membrane Sci., 2024, vol. 707, p. 122989.
- Bacabe, R., Dupont, M., Lecoeur, F., Donzel, N., Jones, D., Roziere, J., Jarrosson, T., Serein-Spirau, F., Cavaliere, S., Niebel, C., and Blanchard, P., Mitigation strategy of organic redox mediator crossover in chemically regenerative redox fuel cells, Intern. J. Hydrogen Energy, 2024, vol. 79, p. 657.
- Salam, A., Zholobko, O., and Wu, X.F., Roles of functionalized nanoparticles in the performance improvement of proton-exchange membranes used in low- and intermediate-temperature hydrogen fuel cells: A review, Progress in Natural Sci.: Mater. Intern., 2024, vol. 34, p. 437.
- Аваков, В.Б., Алиев, А.Д., Бекетаева, Л.А., Богдановская, В.А., Бурковский, Е.В., Дацкевич, А.А., Иваницкий, Б.А., Казанский, Л.П., Капустин, А.В., Корчагин, О.В., Кузов, А.В., Ландграф, И.К., Лозовая, О.В., Модестов, А.Д., Станкевич, М.М., Тарасевич, М.Р., Чалых, А.Е. Исследование деградации мембранно-электродных блоков водородо-кислородного (воздушного) топливного элемента в условиях ресурсных испытаний и циклирования напряжения. Электрохимия. 2014. Т. 50. С. 858. [Avakov, V.B., Aliev, A.D., Beketaeva, L.A., Bogdanovskaya, V.A., Burkovsky, E.V., Datskevich, A.A., Ivanitskii, B.A., Kazansky, L.P., Kapustin, A.V., Korchagin, O.V., Kuzov, A.V., Landgraf, I.K., Lozovaya, O.V., Modestov, A.D., Stankevich, M.M., Tarasevich, M.R., and Chalykh, A.E., Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling, Russ. J. Electrochem., 2014, vol. 50, p. 773.]
- Аваков, В.Б., Богдановская, В.А., Иваницкий, Б.А., Капустин, А.В., Кузов, А.В., Ландграф, И.К., Модестов, А.Д., Радина, М.В., Станкевич, М.М., Тарасевич, М.Р., Трипачев, О.В. Характеристики мембранно-электродных блоков водородо-воздушных топливных элементов с PtCoCr/C-катализатором. Электрохимия. 2014. Т. 50. С. 733. [Avakov, V.B., Bogdanovskaya, V.A., Ivanitskii, B.A., Kapustin, A.V., Kuzov, A.V., Landgraf, I.K., Modestov, A.D., Radina, M.V., Stankevich, M.M., Tarasevich, M.R., and Tripachev, O.V., Characteristics of membrane-electrode assemblies of hydrogen-air fuel cells with PtCoCr/C catalyst, Russ. J. Electrochem., 2014, vol. 50, p. 656.]
- Falina, I., Loza, N., Brovkina, M., Titskaya, E., Timofeev, S., and Kononenko, N., Electrotransport properties of perfluorinated cation-exchange membranes of various thickness, Membranes, 2023, vol. 13, p. 873.
- Кононенко, Н.А., Шкирская, С.А., Рыбалко, М.В., Зотова, Д.А. Влияние инертного фторполимера на равновесные и динамические гидратные характеристики мембраны МФ-4СК. Коллоид. журн. 2023. Т. 85. № 6. С. 738. [Kononenko, N.A., Shkirskaya, S.A., Rybalko, M.V., and Zotova, D.A., The influence of inert fluoropolymer on equilibrium and dynamic hydration characteristics of mf-4sc membrane, Colloid Journal, 2023, vol. 85, no. 6, p. 908.]
Arquivos suplementares
