Magnetic Films Tremag Co–Ni–Fe

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Magnetic films for creating magnetic field amplifiers must have a high magnetic permeability. The magnetization characteristics of electrochemically deposited CoNiFe films of variable composition are investigated using a magnetic force microscope at the nanometer scale. The difference in the magnetization of the samples is explained from the standpoint of the peculiarities of the local domain and crystallographic structure. We suppose that high magnetic permeability in weak magnetic fields is determined by the crystal lattice of the tremag Co60Ni20Fe20, in which the cells fcc and bcc are adjacent to each other.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Tikhonov

Technological Centre Scientific-Manufacturing Complex

Хат алмасуға жауапты Автор.
Email: R.Tikhonov@tcen.ru
Ресей, Moscow

Әдебиет тізімі

  1. Доменная структура и магнитная анизотропия ферромагнетиков [перевод]. https://studopedia.ru/11_78101_domennaya-struktura-i-magnitnaya-anizotropiya-ferromagnetikov.html
  2. Raj, R., Kuila, M., Gupta, M., and Reddy, V.R., 57Fe Mössbauer and magneto-optical Kerr effect (MOKE) study of transcritical state in permalloy (FexNi100-x) thin films, Hyperfine Interactions, 2021, vol. 242(30), p. 1.
  3. Тихонов, Р.Д., Черемисинов, А.А. Намагничивание пленок пермаллоя. Микроэлектроника. 2017. Т. 46(2). С. 104. [Tikhonov, R.D. and Cheremisinov, A.A., Magnetization of Permalloy Films, Russian Microelectronics, 2017, vol. 46 (2), p. 95.]
  4. Dev, K., Kaur, R., Vashisht, G., Sulania, I., and Annapoorni, S., Magnetization Reversal Behavior in Electrodeposited Fe–Co–Ni Thin Films, IEEE Transactions on Magnetics, 2022, vol. 58(8), p. 1.
  5. Тихонов, Р.Д., Черемисинов, А.А., Горелов, Д.В., Казаков, Ю.В. Магнитные свойства пленок CoNiFe, полученных электрохимическим осаждением по методу Тихонова. Нано- и микросистемная техника. 2020. Т. 22(3). С. 123. [Tikhonov, R.D., Cheremisinov, A.A., Gorelov, D.V., and Kazakov, Ju.V., Magnetic properties of CoNiFe films obtained by electrochemical deposition according to the Tikhonov method, Nano- and microsystem technology, 2020, vol. 22(3), p. 123.]
  6. Тихонов, Р.Д., Черемисинов, А.А., Тихонов, М.Р. Ионный разряд при электрохимическом осаждении пленок CoNiFe. Электрохимия. 2021. Т. 57(12). С. 756. [Tikhonov, R.D., Cheremisinov, A.A., and Tikhonov, M.R., Ion discharge in electrochemical deposition of CoNiFe films, Russ. J. Electrochem., 2021, vol. 57(12), p. 1151.]
  7. Тихонов, Р.Д., Поломошнов, С.А., Амеличев, В.В., Черемисинов, А.А., Потапов, В.C., Горелов, Д.В., Казаков, Ю.В. Механические напряжения и магнитные свойства пленок NiFe и CoNiFe, полученных электрохимическим осаждением. Известия вузов. Электроника. 2022. Т. 27(4). С. 427. [Tikhonov, R.D., Polomoshnov, S.A., Amelichev, V.V., Cheremisinov, A.A., Potapov, V.S., Gorelov, D.V., and Kasakov, Ju.V., Mechanical stresses and magnetic properties of NiFe and CoNiFe films obtained by electrochemical deposition, Semiconductors, 2022, vol. 56(13), p. 29.]
  8. Тихонов, Р.Д., Черемисинов, А.А., Тихонов, М.Р. Магнитная проницаемость пленок сплава Cо–Ni–Fe, полученных электрохимическим осаждением. Микроэлектроника. 2022. Т. 51(5). С. 323. [Tikhonov, R.D., Cheremisinov, A.A., and Tikhonov, M.R., Magnetic Permeability of Co–Ni–Fe Alloy Films Obtained by Electrochemical Deposition, Pleiades Publishing, Ltd., Russian Microelectronics, 2022, vol. 51(5), p. 273.]
  9. Тихонов, Р.Д., Черемисинов, А.А., Тихонов, М.Р. Конгруэнтное электрохимическое осаждение пленок Co–Ni–Fe. Электрохимия. 2022. Т. 58(12). С. 756. [Tikhonov, R.D., Cheremisinov, A.A., and Tikhonov, M.R., Congruent Electrochemical Film Deposition Co–Ni–Fe, Russ. J. Electrochem., 2022, vol. 58(12), p. 22.]
  10. Тихонов, Р.Д., Черемисинов, А.А., Тихонов, М.Р. Локальное электрохимическое осаждение магнитных сплавов Ni–Fe и Co–Ni–Fe. Техносфера. 2022. С. 320. [Tikhonov, R.D., Cheremisinov, A.A., and Tikhonov, M.R., Local electrochemical deposition of magnetic alloys Ni–Fe and Co–Ni–Fe, Moscow, Technosphere, 2022, p. 320.]
  11. Weßels, T., Kovács, A., Gliga, S., and Dunin-Borkowski, R.E., Quantitative imaging of the magnetic field distribution in an artificial spin ice studied by off-axis electron holography, J. Magnetism and Magnetic Materials, 2021, vol. 543(1), 168535.
  12. Osaka, T., Takai, M., Hayashi, K., Ohashi, K., Saito M., and Yamada, K., A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity, Nature, 1998, vol. 387, p. 796.
  13. Publication Number SMC-031, Special Metals Corporation, 2004.
  14. Torabinejad, V., Aliofkhazraei, M., Assareh, S., Allahyarzadeh, M.H., and Sabour Rouhaghdam, A., Electrodeposition of Ni–Fe alloys, composites, and nano coatingse. A review, J. Alloys and Compounds, 2017, vol. 691, p. 841.
  15. Кристаллическая структура металлов. https://studopedia.ru/2_24178 kristallicheskaya-struktura-metallov.html; https://natural-museum.ru/chemistry.
  16. Ledwig, P., Kac, M., Kopia, A., Falkus, J., and Dubiel, B., Microstructure and Properties of Electrodeposited Nanocrystalline Ni–Co–Fe Coatings, Mater. Sci., 2021, vol. 14, p. 3886.
  17. Park, D.Y., Yoo, B., Kelcher, S., and Myung, N., Electrodeposition of low-stress high magnetic moment Fe–rich FeCoNi thin films, Electrochim. Acta, 2006, vol. 51(12), p. 2523.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Magnetic force microscopy (MFM) of Fe7Ni93 sample with band domains.

Жүктеу (709KB)
3. Fig. 2. Microscopic image on 0.5 × 0.5 mm area of the domain structure of S1(FeCo) and S4(Fe38Co37Ni25) samples obtained using the Kerr effect when subjected to magnetic fields.

Жүктеу (617KB)
4. Fig. 3. Dependences of saturation of specific magnetisation B/h and iron content Fe, Co, Ni in Co-Ni-Fe films on current density J at the cathode during electrochemical deposition process with concentrations of FeCl2 - 4H2O, CoCl2 - 6H2O, NiCl2 - 6H2O salts in 0.5 M electrolyte at pH 1.5 and anode-cathode gap LA-K = 30 mm.

Жүктеу (133KB)
5. Fig. 4. Dependences of saturation specific magnetisation B/h, deposition rate V and coercivity Hc in Co-Ni-Fe films on current density J.

Жүктеу (163KB)
6. Fig. 5. Dependences of Co-Ni-Fe film composition and deposition rate on current density J.

Жүктеу (216KB)
7. Fig. 6. Dependences of relative deflection of silicon wafers D/h, relative saturation induction Vnas /h and coercive force Hc of Co-Ni-Fe films on current density J.

Жүктеу (159KB)
8. Fig. 7. Magnetisation of Co-Ni-Fe films in a magnetic field up to 10 E.

Жүктеу (88KB)
9. Fig. 8. Surface images of samples 1 (a) and 2 (b) obtained on magnetic force microscope.

Жүктеу (813KB)
10. Fig. 9. Aligned diffractograms of samples 1 and 2 of Fig. 8.

Жүктеу (60KB)
11. Fig. 10. Phase structure of Fe-Co-Ni ternary alloy films as a function of composition [12]. The circle indicates the composition of Co60Ni20Fe20 films.

Жүктеу (162KB)
12. Fig. 11. Dependence of Ni-Fe alloy magnetisation on composition.

Жүктеу (104KB)
13. Fig. 12. X-ray diffractograms of Ni-Fe alloy at iron content of 10, 24, 58 and 75%.

Жүктеу (91KB)

© Russian Academy of Sciences, 2025