Application of graphenes in supercapacitors (review)
- Authors: Volfkovich Y.M.1
-
Affiliations:
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Issue: Vol 61, No 1 (2025)
- Pages: 5-46
- Section: Special issue based on the reports at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics” (Chernogolovka, June 16–23, 2024)
- URL: https://kazanmedjournal.ru/0424-8570/article/view/683945
- DOI: https://doi.org/10.31857/S0424857025010019
- EDN: https://elibrary.ru/DLGFKH
- ID: 683945
Cite item
Abstract
This review examines the literature, mainly of recent years, on the current topic of using graphenes in supercapacitors. The influence of the porous structure of graphenes, the influence of doping and irradiation of graphenes are considered. Methods for producing graphenes, composites of graphenes with metal oxides, sulfides and selenides, with metal particles, with electron-conducting polymers, with MXenes, as well as quantum dots are considered. Electrochemical characteristics are given for the types of graphene considered.
Full Text

About the authors
Yu. M. Volfkovich
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Author for correspondence.
Email: yuvolf40@mail.ru
Russian Federation, Moscow
References
- Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
- Dhaka, T.P., Chapter 8 – Simple Parallel-Plate Capacitors to High–Energy Density Future Supercapacitors: A Materials Review (Carbide–Derived Carbon – an overview), Emerging Mater. for Energy Conversion and Storage, 2018, p. 247.
- Chee, W.K., Lim, W.K., Zainal, H.N, Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C, 2016, vol. 120, p. 4153.
- Hussain, N., Abbas, Z., and Nabeela, K., Free-standing metal–organic frameworks on electrospun core–shell graphene nanofibers for flexible hybrid supercapacitors, J. Mater. Chem. A, 2024. https://doi.org/10.1039/D4TA02221A
- Karim, G.M., Dutta, P., Majumdar, A., Patra, A., and Deb, S.K., Ultra-fast electro-reduction and activation of graphene for high energy density wearable supercapacitor asymmetrically designed with MXene, Carbon, 2023, vol. 23, p. 191.
- Liu, L., Xie, Z., Du, X., Yu, D., Yang, B., Li, and Liu, X., Large-scale mechanical preparation of graphene containing nickel, nitrogen and oxygen dopants as supercapacitor electrode materia, Chem. Engineering J., 2022, vol. 430, 132815.
- Xiaoshan, L., Ruiyi, L., Zaijun, L., and Yongqiang, Y., Construction of advanced Nb9VO25 electrode material by introducing graphene quantum dot for high energy supercapacitors with exceptionally high diffusive, J. Industrial and Engineering Chem., 2024. https://doi.org/10.1016/j.jiec.2024.06.036
- Haridas, H., Kader, A.K., and Sellathurai, A., Noncovalent functionalization of graphene nanoplatelets and their applications in supercapacitors, ACS Appl. Mater. Interfaces, 2024, vol. 16, p. 16630. https://doi.org/10.1021/acsami.3c18174
- Morenghi, A., Scaravonati, S., Magnani, G., and Sidoli, M., Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes, Electrochim. Acta, 2022, vol. 424, p. 140626.
- Liu, B., Zhang, Q., Zhang, L., Xu, C., and Pan, Z., Electrochemically exfoliated chlorine doped graphene for flexible all solid state microsupercapacitors with high volumetric energy density, Advanced Mater., 2022, vol. 34, p. 2106309.
- Mohanty, G.C., Gowda, C.C., and Gakhad, P., Enhanced energy density of high entropy alloy (Fe-Co-Ni-Cu-Mn) and green graphene hybrid supercapacitor, Energy Storage, 2024, vol. 6, p. e668. https://doi.org/10.1002/est2.668
- Tyagaraj, H.B., Mahamiya, V., and Marje, S.J., Waste-to-Energy Material: Winery-Waste Derived Heteroatoms Containing Graphene-like Porous Carbon for High-Voltage Supercapacitor, Mater. Today Sustainability, 2024, p. 100901. https://doi.org/10.1016/j.mtsust.2024.100901
- Mohamed, N.B. and El Kady, M.F., Macroporous graphene frameworks for sensing and supercapacitor applications, Advanced Functional Mater., 2022, vol. 32, p. 2203101.
- Najafi, M.D., Ehsani, A., Nabatian, M., and Hamza, Z., Advanced Supercapacitor Electrodes: Synthesis and Electrochemical Characterization of Graphene xide–Bismuth Metal–Organic Framework Composites for, Electrochim. Acta, 2024, p. 144636. https://doi.org/10.1016/j.electacta.2024.144636
- Subrahmanian, S.K. and Palliyal, K.V., In-situ green gram scale synthesis of carbon sphere/graphene for high-performance supercapacitors, Nano-Structures & Nano-Objects, 2024, vol. 37, p. 101107. https://doi.org/10.1016/j.nanoso.2024.101107
- Shi, Z. Sun, G., Yuan, R., Chen, W., Wang, Z., and Zhang, L., Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime, J. Mater. Sci. & Technol., 2022, vol. 99, p. 260.
- Mupit, M., Islam, M.R., Azam, M.A., and Yunus, R., Magnetic particle-filled polyaniline-doped graphene oxide nanocomposite-based electrode in application of supercapacitor, Energy & Fuels, 2024, vol. 35. https://doi.org/10.1177/0958305X221145
- Hoque, M.I., Donne, S.W., and Holze, R., Graphene Nanocomposite Materials for Supercapacitor Electrodes, Encyclopedia, 2024, vol. 4, p. 101. https://doi.org/10.3390/encyclopedia4010009
- Kalicharan, A., Pitchaimani, J., and Kanna, C.B., Green Chemistry Approach for One Step Synthesis of Iodinated Graphene Material for Supercapacitor Applications, Chem. Europe, 2024, vol. 9, e202400820.
- Ahmad, F., Zahid, M., Jamil, H., Khan, M.A., and Atiq, S., Advances in graphene-based electrode materials for high-performance supercapacitors: a review, J. Energy Storage, 2023, vol. 72, p. 108731.
- Smaisim, G.F., Abed, A.M., Al-Madhhachi, H., and Hadrawi, S.K., Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: A Review, BioNanoSci., 2023, vol. 13, p. 219.
- Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., and Yadav, R.M., Graphene-metal oxide hybrid materials with 2D and 3D morphologies for advanced supercapacitor electrodes: status, challenges and prospects, Mater. Today Nano, 2023, vol. 24, 100399.
- Mousavi, S.M., Hashemi, S.A., and Kalashgrani, M.Y., Recent advances in energy storage with graphene oxide – for supercapacitor technology, Sustainable Energy Fuels, 2023, vol. 7, p. 5176.
- Xia, C., Ren, T., Darabi, R., and Shabani-Nooshabadi, M., Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor, Energy, 2023, vol. 270, p. 126914.
- Ran, J., Liu, Y., Feng, H., Shi, H., and Ma, Q., A review on graphene-based electrode materials for supercapacitor, J. Industrial and Engineering Chem., 2024. https://doi.org/10.1016/j.jiec.2024.03.043
- Li, Z., Xiong, Z., Pan, H., and Shang, N., Graphene Oxide-Based Aluminum Complex Ion Supercapacitor, ACS Appl. Energy Mater., 2023, vol. 6, p. 10554.
- Youssry, S.M., Abd Elkodous, M., Kumar, R., and Kawamura, G., Thermal-assisted synthesis of reduced graphene oxide-embedded Ni nanoparticles as high-performance electrode material for supercapacitor, Electrochim. Acta, 2023, vol. 463, p. 142814.
- Sayahi, H., Mehrvar, Z., Mohsenzadeh, F., and Darabi, H.R., Room-temperature defect-controlled fabrication of graphene via sustainable electrochemical exfoliation: An ultra-performance supercapacitor, J. Energy Storage, 2023, vol. 68, p. 107646.
- Anagbonu, P., Ghali, M., and Allam, A., Low-temperature green synthesis of few-layered graphene sheets from pomegranate peels for supercapacitor applications, Sci. Rep., 2023, vol. 13, p. 15627.
- Méndez-Reséndiz, A. and Méndez-Romero, U.A., Highly crystalline selectively oxidized graphene for supercapacitors, FlatChem, 2023, vol. 38, vol. 201, p. 100483.
- Peng, Q., Tan, X., Venkataraman, M., and Militký, J., Application of Graphene in Supercapacitor and Wearable Sensor, Advanced Structured Mater., 2023, vol. 201. https://doi.org/10.1007/978-981-99-6002-6_3
- Zhou, Q., Wang, L., Ju, W., Su, D., Zhu, J., Yong, Y., and Wu, S., Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes, Electrochim. Acta, 2023, vol. 461, p. 142655.
- Wu, C., Zhu, J., Zhang, B., Shi, H., Zhang, H., and Yuan, S., Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel, J. Colloid and Interface Sci., 2023, vol. 650, p. 1871.
- He, M., Wu, L., Yu, A., Li, X., Guan, S., Han, Q., and Wang, H., Surface functionalization of vertical graphene significantly enhances the energy storage capability for symmetric supercapacitors, Carbon, 2024, vol. 216, p. 118511. https://doi.org/10.1016/j.carbon.2023.118511
- Bo, W., Zhang, H., Yin, G., Zhang, L., and Qin, J., Recent advances in graphene-based mesoporous nanosheets for supercapacitors, J. Carbon Res., 2023, vol. 9, p. 91. https://doi.org/10.3390/c9040091
- Madhushani, K.A. and Gupta, R.K., 3D Graphene for High-Performance Supercapacitors, Graphene: Fundamentals, Synthesis, Carbon Nanostructures. Springer, Cham., 2023. https://doi.org/10.1007/978-3-031-36249-1_16
- Kumar, R., Sahoo, S., Joanni, E., and Singh, R.K., A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond, J. Energy Chem., 2022, vol. 74, p. 252.
- Arvas, M.B., Gürsu, H, Gencten, M., and Sahin, Y., Supercapacitor applications of novel phosphorus doped graphene-based electrodes, J. Energy Storage, 2022, vol. 55, p. 105766.
- Saad, A.G., Emad-Eldeen, A., and Tawfik, W.Z., Data-driven machine learning approach for predicting the capacitance of graphene-based supercapacitor electrodes, J. Energy Storage, 2022, vol. 55, p. 105411.
- Zhu, S., Zhang, F., Lu, H.G., Sheng, J., and Wang, L., Flash nitrogen-doped graphene for high-rate supercapacitors, ACS Mater. Lett., 2022, vol. 4, p. 1863.
- Li, X., Li, Y., Zhao, X., Kang, F., and Dong, L., Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors, Energy Storage Mater., 2022, vol. 53, p. 505.
- Ibrahim, M., Abdelhamid, H.N., and Abuelftooh, A.M., Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors, J. Energy Storage, 2022, vol. 55, p. 105375.
- Athanasiou, M., Yannopoulos, S.N., and Ioannides, T., Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review, Chem. Engineering J., 2022, vol. 446, p. 137191.
- Sawant, S.A., Patil, A.V., Waikar, M.R., and Rasal, A.S., Advances in chemical and biomass-derived graphene/graphene-like nanomaterials for supercapacitors, J. Energy Storage, 2022, vol. 51, p. 104445.
- Shulga, Yu.M., Baskakova, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N. Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys and Compounds, 2018, vol. 730, p. 88.
- Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu.M., Sosenkin, N.Y., Shulga, Parkhomenko, Y.N., Michtchenko, A., and Kumar, Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous and Mesoporous Mater., 2017, vol. 245, p. 24.
- Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A. Yu., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Protection Metals and Phys. Chem. Surfaces, 2017, vol. 53, p. 422.
- Shulga, Yu.M., Baskakov, S.A.,.Baskakova, Yu.V., Volfkovich, Yu.M., Shulga, N. Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.
- Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes. A review, J. Materiomics, 2016, vol. 2, p. 37.
- Lee, H. and Lee, K.S., Interlayer distance controlled graphene, supercapacitor and method of producing the same, US Patent 10, 214, 422 B2, 2019.
- Yang, X., Cheng, C., Wang, Y., Qiu, L., and Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, 2013, vol. 341, p. 534.
- Aboutalebi, H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., and Dou, S.X., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 2011, vol. 4, p. 1855.
- Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., Guo, Q., and Liu, L., Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, J. Power Sources, 2012, vol. 217, p. 6.
- Sun, D., Yan, X., Lang, J., and Xue, Q., High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper, J. Power Sources, 2013, vol. 222, p. 52.
- Zhou, Z. and Wu, X.F., Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources, 2013, vol. 222, p. 410.
- Mohammadi, A., Arsalani, N., Tabrizi, A.G., Moosavifard, S.E., Naqshbandi, Z., and Ghadimi L. S., Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Engineering J., 2018, vol. 334, p. 66.
- Smirnov, V.A., Denisov, N.N., Dremova, N.N., Volfkovich, Yu.M., Rychagov, A. Yu., Sosenkin, V.E., Belay, K.G., Gutsev, G.L., Shulga, N. Yu., and Shulga, Yu.M., A comparative analysis of graphene oxide films as proton conductors, Appl. Phys. A, 2014, vol. 117, p. 1859.
- Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A. Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and Hydrophobic Pores in Reduced Graphene Oxide Aerogel, J. Porous Mater., 2019, vol. 26, p. 1111.
- Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntzev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetzov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising Electrode Materials for Supercapacitors, Electrochemical Energetiks.
- Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.
- Volfkovich, Yu.M., Rychagov, A. Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the Specific Surface Area of Carbon Nanomaterials by Different Methods, Russ. J. Electrochem., 2014, vol. 50, p. 1099.
- Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion. Intern, J. Hydrogen Energy, 2018, vol. 43, p. 2307.
- Liu, H., Wang, Y., Gou, X., Qi, T., Yang, J., and Ding, Y., Three-dimensional graphene/polyaniline composite material forhigh-performance supercapacitor applications, Mater. Sci. and Engineering B, 2013, vol. 178, p. 293.
- Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.
- Vivekchand, S.R., Rout, C.S., and Subrahmanyam, K.S., Graphene-based electrochemical supercapacitors, J. Chem. Sci., 2008, vol. 120, p. 9.
- Šedajová, V., Jakubec, P., Bakandritsos, A., and Ranc, V., New limits for stability of supercapacitor electrode material based on graphene derivative, Nanomaterials, 2020, vol. 10, p. 1731.
- Khakpour, I., Rabiei, and Baboukani, A., Bipolar exfoliation and in situ deposition of high-quality graphene for supercapacitor application, ACS Appl. Energy Mater., 2019, vol. 2, p. 4813.
- Malik, M.T., Sarker, A., and Rahat, S.M., Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review, Mater. Today, 2021, vol. 28, p. 102685.
- Liu, C., Yu, Z., Neff, D., Zhamu, A., and Jang, B.Z., Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 2010, vol. 10, p. 4863.
- Li, H., Tao, Y., Zheng, X., Luo, J., and Kang, F., Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage, Energy Environ. Sci., 2016, vol. 9, p. 3135.
- Zhang, H., Yang, D., Lau, A., Ma, T., Lin, H., and Jia, B., Hybridized graphene for supercapacitors: Beyond the limitation of pure graphene, Small, 2021, vol. 17, p. 2007311.
- Ho, B.T., Lim, T.G., Jeong, M.H., and Suk, J.W., Graphene fibers containing activated graphene for high-performance solid-state flexible supercapacitors, ACS Appl. Energy Mater., 2021, vol. 4, p. 8883.
- Sarada, K.B.V., Varadaraju, U.V., and Rao, T.N., A novel approach to synthesize porous graphene sheets by exploring KOH as pore inducing agent as well as a catalyst for supercapacitors with ultra-fast rate capability, Renewable Energy, 2021, vol. 172, p. 502.
- An, N., Guo, Z., Xin, J., He, Y., Xie, K., and Sun, D., Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors, J. Mater. Chem. А, 2021, vol. 9, p. 16824.
- Yan, Z., Gao, Z., Zhang, Z., Dai, C., Wei, W., and Shen, P.K., Graphene nanosphere as advanced electrode material to promote high performance symmetrical supercapacitor, Small, 2021, vol. 17, p. 2007915.
- Kim, J., Eum, J.H., Kang, J., Kwon, O., Kim, H., and Kim, D.W., Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor, Sci. Rep., 2021, vol. 11, p. 2063.
- Iakunkov, A., Skrypnychuk, V., and Nordenström, A., Activated graphene as a material for supercapacitor electrodes: Effects of surface area, pore size distribution and hydrophilicity, Phys. Chem.Chem. Phys., 2019, vol. 21, p. 17901.
- Nomura, K., Nishihara, H., and Kobayashi, N., V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls, Energy Environ. Sci., 2019, vol. 12, p. 1542.
- Sun, D., Yu, X., Ji, X., Sun, Z., and Sun, D., Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode, J. Alloys and Compounds, 2019, vol. 805, p. 327.
- Obeidat, A.M., Luthra, V., and Rastogi, A.C., Solid-state graphene-based supercapacitor with high-density energy storage using ionic liquid gel electrolyte: electrochemical properties and performance in storing solar electricity, J. Solid State Electrochem., 2019, vol. 23, p. 1667.
- Xiong, C., Li, B., Lin, X., Liu, H., Xu, Y., Mao, J., and Duan, C., The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor, Composites Part B: Engineering, 2019, vol. 165, p. 10.
- Huang, Y., Shi, Y., Gong, Q., Weng, M., Li, Y., and Gan, J., Scalable preparation of hierarchical porous activated carbon/graphene composites for high-рerformance supercapacitors, J. Mater. Chem. А, 2019, vol. 7, p. 10058.
- Wang, K., Li, L., Zhang, T., and Liu, Z., Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability, Energy, 2014, vol. 70, p. 612.
- Gorenskaia, E.N. and Kholkhoev, B.C., Hydrothermal synthesis of N-doped graphene for supercapacitor electrodes, J. Nanosci. and Nanotechnol., 2020, vol. 20, p. 3258.
- Karaman, K., Bayram, E., and Aktash, O., Preparation of high surface area graphene doped with nitrogen to evaluate the influence of morphological properties and nitrogen content on supercapacitors, J. Electroanal. Chem., 2020, vol. 868, p. 114197.
- Elessawy, N.A., Nady, J.E., Wazeer, W., and Kashyout, A.B., Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene, Sci. Rep., 2019, vol. 9, p. 1129.
- Huang, T., Chu, X., Cai, S., Yang, Q., Chen, H., and Liu, Y., Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading, Energy Storage Mater., 2019, vol. 17, p. 349.
- Zhao, T., Yang, D., Xu, T., and Zhang, M., Cold Resistant Nitrogen/Sulfur Dual Doped Graphene Fiber Supercapacitors with Solar–Thermal Energy Conversion Effect, Chemistry A Europ. J., 2021, vol. 27, p. 3473.
- Cao, L., Li, H., Liu, X., Liu, S., Zhang, L., Xu, W., and Yang, H., Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with “sphere-in-layer” interconnection for high-performance supercapacitor, J. Colloid and Interface Sci., 2021, vol. 599, p. 443.
- Moreno-Fernández, G. and Gómez-Urbano, J.L., Flat-shaped carbon–raphene microcomposites as electrodes for high energy supercapacitors, J. Mater. Chem. А, 2019, vol. 7, p. 14646.
- Li, J., Li, X., Xiong, D., Wang, L., and Li, D., Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors, Appl. Surface Sci., 2019, vol. 475, p. 285.
- Cui, D., Li, H., Li, M., Li, C., Qian, L., and Zhou, B., Boron-doped graphene directly grown on boron-doped diamond for high-voltage aqueous supercapacitors, ACS Appl. Energy Mater., 2019, vol. 2, p. 1526.
- Arvas, M.B., Gürsu, H., Gencten, M., and Sahin, Y., Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications, J. Energy Storage, 2021, vol. 35, 102328.
- Xu, Q., Yang, G., Fan, X., and Zheng, W., Improving the quantum capacitance of graphene-based supercapacitors by the doping and co-doping: first-principles calculations, ACS Omega, 2019, vol. 4, p. 13209.
- Athanasiou, M., Samartzis, N., Sygellou, L., and Dracopoulos, V., High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors, Carbon, 2021, vol. 172, p. 750.
- Hamra, A.A., Lim, H.N., and Huang, H.N., Microwave exfoliated graphene-based materials for flexible solid-state supercapacitor, J. Molec. Structure, 2020, vol. 1220, p. 128710.
- Yang, D. and Bock, C., Laser reduced graphene for supercapacitor applications, J. Power sources, 2017, vol. 337, p. 73.
- Le Fevre, L.W., Cao, J., Kinloch, I.A., and Forsyth, A.J., Systematic comparison of graphene materials for supercapacitor electrodes, Chem. Open, 2019, vol. 8, p. 418.
- Singh, A. and Ojha, A.K., Coal derived graphene as an efficient supercapacitor electrode material, Chem. Physics, 2020, vol. 530, p. 110607.
- Karakoti, M., Pandey, S., and Jangra, R., Waste plastics derived graphene nanosheets for supercapacitor application, Materials and Manufacturing Proc. Mater., 2021, vol. 36, p. 171.
- Pandey, S., Karakoti, M., Surana, K., and Dhapola, P.S., Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors, 2021, Sci. Rep., vol. 11, p. 3916.
- Tamilselvi, R., Ramesh, M., Lekshmi, G.S., and Bazaka, O., Graphene oxide-based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems, Renewable Energy, 2020, vol. 151, p. 731.
- Xiong, C. and Li, B., Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications, Chem. Engineering J., 2021, vol. 15, 129518.
- Xing, J., Tao, P., Wu, Z., Xing, C., Liao, X., and Nie, S., Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors, Carbohydrate Polymers, 2019, vol. 207, p. 447.
- Peng, X., Cao, H., Qin, Z., Zheng, C., Zhao, M., Liu, P.Z., and Xu, B., A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors, Electrochim. Acta, 2019, vol. 305, p. 56.
- Bellani, S., Petroni, E., and Del Rio Castillo, A.E., Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed microsupercapacitors, Advanced Functional Mater., 2019, vol. 29, p. 1807659.
- Mensing, J.P., Lomas, T., and Tuantranont, A., 2D and 3D printing for graphene based supercapacitors and batteries: A review, Sustainable Mater. and Technol., 2020, vol. 25, p. 190.
- Nandi, D., Mohan, V.B., and Bhowmick, A.K., Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review, J. Mater. Sci., 2020, vol. 55, p. 63752020.
- Choi, H., Nguyen, P.T., Van Tran, P.T., and In, J.B., Micro-patterned metal current collectors for high aspect ratio flexible graphene supercapacitors, Appl. Surface Sci., 2020, vol. 510, 145432.
- Zhou, Y., Cheng, X., Huang, F., Sha, Z., Han, Z, and Chen, J., Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2, Carbon, 2021, vol. 172, p. 272.
- Sha, Z., Huang, F., Zhou, Y., Zhang, J., Wu, S., and Chen, J., Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors, Composites Sci. and Technol., 2021, vol. 201, p. 108568.
- Mane, V.J., Kale, S.B., Ubale, S.B., and Lokhande, V.C., Enhanced specific energy of silver-doped MnO2/graphene oxide electrodes as facile fabrication symmetric supercapacitor device, Mater. Today Chem., 2021, 20, p. 100473.
- Ashourdan, M., Semnani, A., and Hasanpour, F., Synthesis of CuMnO2/graphene quantum dot nanocomposites as novel electrode materials for high performance supercapacitors, J. Energy Storage, 2021, vol. 36, p. 102449.
- Fornasini, L., Scaravonati, S., Magnani, G., and Morenghi, A., In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-.supercapacitors, Carbon, 2021, vol. 176, p. 296.
- El-Gendy, D.M., Ghany, N.A., and Allam, N.K., Black titania nanotubes/spongy graphene nanocomposites for high-performance supercapacitors, RSC advances, 2019, vol. 9, 12555.
- Jiang, D., Zheng, M., You, Y., Li, F., Yuan, H., and Zhang, W., β-Ni(OH)2/nickel-cobalt layered double hydroxides coupled with fluorine-modified graphene as high-capacitance supercapacitor electrodes with improved cycle life, J. Alloys and Compounds, 2021, vol. 875, p. 159929.
- Sethi, M., Shenoy, U.S., and Bhat, D.K., Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application, J. Alloys and Compounds, 2021, vol. 854, p. 157190.
- Gao, X., Zhang, H., Guo, E., Yao, F., Wang, Z., and Yue, H., Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes, Microchem. J., 2021, vol. 164, p. 105979.
- Le, K., Wang, Z., Wang, F., Wang, Q., and Shao, Q., Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors, Dalton Trans., 2019, vol. 48, p. 5193.
- Kharangarh, P.R., Ravindra, N.M., and Rawal, R., Graphene quantum dots decorated on spinel nickel cobaltite nanocomposites for boosting supercapacitor electrode material performance, J. Alloys and Compounds, 2021, vol. 876, 159990.
- Thalji, M.R., Ali, G.A., Liu, P., and Zhong, Y.L., W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte, Chem. Engineering J., 2021, vol. 409, p. 128216.
- Lee, S.M., Park, Y.J., Kim, J.H., and Lee, K., Effects of annealing on electrochemical performance in graphene/V2O5 supercapacitor, Appl. Surface Sci., 2020, vol. 512, p. 145626.
- Fu, M., Zhuang, Q., Zhu, Z., Zhang, Z., Chen, W., and Liu, Q., Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors, J. Alloys and Compounds, 2021, vol. 862, p. 158006.
- Zhu, C., Dong, X., Mei, X., Gao, M., Wang, K., and Zhao, D., General fabrication of metal oxide nanoparticles modified graphene for supercapacitors by laser ablation, Appl. Surface Sci., 2021, vol. 568, p. 150978.
- Zhang, J., Zhang, Z., Jiao, Y., Yang, H., Li, Y., and Zhang, J., The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors, J. Power Sources, 2019, vol. 419, p. 99.
- Kasap, S., Kaya, I.I., Repp, S., and Erdem, E., Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects, Nanoscale Advances, 2019, vol. 1, p. 2586.
- Ning, J., Xia, M., Wang, D., Feng, X., Zhou, H., and Zhang, J., Ni3Si2/NiOOH/Graphene Nanostructure for an All-Solid-State Supercapacitor, Nano-Micro Letters, 2021, vol. 13, p. 2.
- Shahi, M., Hekmat, F., and Shahrokhian, S., Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures, J. colloid and interface, 2021, vol. 585, p. 750.
- Yuan, M., Luo, F., Rao, Y., Yu, J., Wang, Z., Li, H., and Chen, X., SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors, Carbon, 2021, vol. 183, p. 128.
- Lien, C.W., Vedhanarayanan, B., Chen, J.H., and Lin, J.Y., Optimization of acetonitrile/water content in hybrid deep eutectic solvent for graphene/MoS2 hydrogel-based supercapacitors, Chem. Engineering J., 2021, vol. 405, p. 126706.
- Hao, J., Liu, H., Han, S., and Lian, J., MoS2 Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications, ACS Appl. Nano Mater., 2021, vol. 4, p. 2339.
- Xie, B., Yu, M., Lu, L., Feng, H., Yang, Y., Chen, Y., and Cui, H., Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors, Carbon, 2019, vol. 141, p. 134.
- Sitaaraman, S.R., Santhosh, R., Kollu, P., and Jeong, S.K., Diamond and Related Mater., 2020, vol. 108, p. 107983.
- Moosavifard, S.E., Mohammadi, A., and Darzi, M.E., A facile strategy to synthesis graphene-wrapped nanoporous copper-cobalt-selenide hollow spheres as an efficient electrode for hybrid supercapacitors, Chem. Engineering J., 2021, vol. 415, p. 128662.
- Gu, Y., Fan, L.Q., Huang, J.L., Geng, C.L., and Lin, J.M., N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors, J. Power Sources, 2019, vol. 425, p. 60.
- Huang, Q., Yang, Y., Chen, R., and Wang, X., High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers, EcoMat, 2021, vol. 3, p. 12076.
- Karami, Z., Youssefi, M., Raeissi, K., and Zhiani, M., An efficient textile-based electrode utilizing silver nanoparticles/reduced graphene oxide/cotton fabric composite for high-performance wearable supercapacitors, Electrochim. Acta, 2021, vоl. 368, p. 137647.
- Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Berlin: Springer Science & Business Media, Germany, 2013.
- Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. N.J.: Jhon Wiely & Sons Inc. Publisher, 2015.
- Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, p. 1.
- Peng, C., Zhang, S., Jewell, D., and Chen, G.Z., Carbon nanotube and conducting polymer composites for supercapacitors, Progress in Natural Sci., 2008, vol. 8, p. 777.
- Huang, Z., Li, L., Wang, Y., Zhang, C., and Liu, T., Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review, Composites Commun., 2018, vol. 8, p. 83.
- Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbonnanotube/polypyrrole composite films, Composites Sci. and Technol., 2007, vol. 67, p. 2981.
- Kim, B.C., Kwon, J.S., Ko, J.M., Park, J.H., Too, C.O., and Wallace, G.G., Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber, Synthetic Metals, 2010, vol. 160, p. 94.
- Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 2013, vol. 6. p. 1185.
- Qin, W., Jian-ling, L., Fei, G., Wen-sheng, L., Ke-zhong, W., and Xin-dong, W., Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, New Carbon Mater., 2008, vol. 1, p. 275.
- Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Letters, 2010, vol. 21, p. 1509.
- Yang, M., Cheng, B., Song, H., and Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 7021.
- Fang, Y., Liu, J., Yu, D.J., Wicksted, J.P., Kalkan, K., Topal, C.Q., Flanders, B.N., Wu, J., and Li, J., Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition, J. Power Sources, 2010, vol. 195, p. 674.
- Vorotyntsev, M.A., Konev, D.V., Devillers, Ch.H., Bezverkhyy, I., and Heintz, Electroactive polymeric material with condensed structure on the basis of magnesium (II) polyporphine, Electrochim. Acta, 2011, vol. 56, p. 3436.
Supplementary files

Note
2 Based on the materials of the lecture at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics”, Chernogolovka, June 16–23, 2024.