Copper oxides on brasses of different phase composition: anode formation and photoelectrocatalytic activity
- Authors: Belyanskaya I.А.1, Bocharnikova М.Y.1, Grushevskaya S.N.1, Kozaderov O.А.1, Vvedensky A.V.1, Kannykin S.V.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 60, No 11 (2024): Special issue “Electrochemistry-2023”, part 2
- Pages: 747-758
- Section: Articles by participants of the All-Russian Conference “Electrochemistry-2023” (Moscow, October 23–26, 2023)
- URL: https://kazanmedjournal.ru/0424-8570/article/view/682799
- DOI: https://doi.org/10.31857/S0424857024110017
- EDN: https://elibrary.ru/NQDOAJ
- ID: 682799
Cite item
Abstract
Copper oxides in combination with other materials, for example, zinc oxide, are considered promising materials for photocatalytic processes of oxidation of organic impurities or photoelectrochemical water splitting. One of the methods for one-stage production of oxide structures of complex composition is the anodic oxidation of alloys. Evaluation of the photocatalytic or photoelectrochemical activity of the obtained materials is possible using photoelectrochemical parameters – the value of photocurrent or photopotential generated under illumination. The purpose of the work is to determine the effectiveness of using Cu(I) oxides, anodically formed in an alkaline solution on alloys of the Cu-Zn system with a zinc concentration of 34 to 50 at. %, in the process of photoelectrochemical decomposition of water. The elemental composition of the alloys was determined using energy-dispersive microanalysis. With increasing concentration of zinc in the studied concentration range, the phase composition changes from á- to β-phase, which is confirmed by the results of X-ray diffractometry. The change in the composition and structure of the alloy is reflected in the photoelectrochemical parameters of the anodic oxide films formed on it. The most promising material for photoelectrocatalytic transformations is an oxide film anodically formed in 0.1 M KOH on an alloy with a zinc concentration of 50 at. % and a β-phase structure. At a relatively low concentration of defects, the highest values of photocurrent are recorded in it at a high enough value of quantum efficiency.
Full Text

About the authors
I. А. Belyanskaya
Voronezh State University
Author for correspondence.
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
М. Yu. Bocharnikova
Voronezh State University
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
S. N. Grushevskaya
Voronezh State University
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
O. А. Kozaderov
Voronezh State University
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
A. V. Vvedensky
Voronezh State University
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
S. V. Kannykin
Voronezh State University
Email: sg@chem.vsu.ru
Russian Federation, Voronezh
References
- Wan, X., Zhu, G., Zhou, Z., and Guan, X., Recent progress on molecular catalysts integrated photoelectrochemical systems for water oxidation, Mater. Today Catal., 2024, vol. 4, 100042. https://doi.org/10.1016/j.mtcata.2024.100042
- Fu, L., Li, Z., and Shang, X., Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement, Intern. J. Hydrogen Energy, 2024, vol. 55, p. 611. https://doi.org/10.1016/j.ijhydene.2023.11.253
- Tezcan, F., A new synthesis route of Bi2S3 with solvothermal deposition in photoelectrochemical hydrogen production, J. Molec. Structure, 2024, vol. 1301, 137418. https://doi.org/10.1016/j.molstruc.2023.137418
- Nabgan, W., Alqaraghuli, H., Owgi, A.H.K., Ikram, M., Vo, D.-V.N., Jalil, A., Djellabi, R., Nordin, A.H., and Medina, F., A review on the design of nanostructure-based materials for photoelectrochemical hydrogen generation from wastewater: Bibliometric analysis, mechanisms, prospective, and challenges, Intern. J. Hydrogen Energy, 2024, vol. 52, Part C, p. 622. https://doi.org/10.1016/j.ijhydene.2023.05.152
- Becerra-Paniagua, D.K., Torres-Arellano, S., Martinez-Alonso, C., Luévano-Hipólito, E., and Sebastian, P.J., Facile and green synthesis of Cu/Cu2O composite for photocatalytic H2 generation, Mater. Sci. in Semiconductor Proc., 2023, vol. 162, 107485. https://doi.org/10.1016/j.mssp.2023.107485
- Arunodaya, J., Nayak, N., and Sahoo, T., Tailoring the optical and electrical behavior of Cu2O/ZnO heterojunction by varying the Zn2+ ion concentration for solar-cell applications, Micro and Nanostructures, 2023, vol. 174, 207488. https://doi.org/10.1016/j.micrna.2022.207488
- Alruwaili, M., Roy, A., Alhabradi, M., Yang, X., Chang, H., and Tahir, A.A., Heterostructured WO3–TiVO4 thin-film photocatalyst for efficient photoelectrochemical water splitting, Helyon, 2024, vol. 10, e25446. https://doi.org/10.1016/j.heliyon.2024.e25446
- Clarizia, L., Nadagouda, M.N., and Dionysiou, D.D., Recent advances and challenges of photoelectrochemical cells for hydrogen production, Current Opinion in Green and Sustainable Chem., 2023, vol. 41, 100825. https://doi.org/10.1016/j.cogsc.2023.100825
- Karaca, A.E. and Dincer, I., Development of a new photoelectrochemical system for clean hydrogen production and a comparative environmental impact assessment with other production methods, Chemosphere, 2023, vol. 337, 139367. https://doi.org/10.1016/j.chemosphere.2023.139367
- Azizi-Toupkanloo, H., Karimi-Nazarabad, M., Eftekhari, M., and Beshkani, A., Load transfer engineering via synergy of BiOI heterojunction with Ag and loading cocatalyst of La2O2CO3 in photoelectrochemical water splitting, Intern. J. Hydrogen Energy, 2024, vol. 57, p. 379. https://doi.org/10.1016/j.ijhydene.2023.12.197
- He, H., Liao, A., Guo, W., Luo, W., Zhou, Y., and Zou, Z., State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis, Nano Today, 2019, vol. 28, 100763. https://doi.org/10.1016/j.nantod.2019.100763
- Li, J., Cui, M., Guo, Z., Liu, Z., and Zhu, Z., Synthesis of dumbbell-like CuO–BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Mater. Lett., 2014, vol. 130, p. 36. https://doi.org/10.1016/j.matlet.2014.05.084
- Septina, W., Gunawan, Shobih, Monov, X.I., and Nursam, N.M., Improved performance of protected CuO photocathodes evaluated by photoelectrochemical characterizations using hydrogen peroxide, Mater. Lett., 2024, vol. 357, 135735. https://doi.org/10.1016/j.matlet.2023.135735
- Li, J., Feng, Qian, F., Guo, C., Wang, N., Chen, Z., and Wang L., Photoelectrochemical effect of Cu2O on the corrosion behavior of Cu in sodium sulfate solution, J. Mater. Sci. & Technol., 2023, vol. 160, p, 46. https://doi.org/10.1016/j.jmst.2023.03.020
- Somasundaram, S., Chenthamarakshan, C.R.N., de Tacconi, N.R., and Rajeshwar, K., Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors, Intern. J. Hydrogen Energy, 2007, vol. 32, p. 4661. https://doi.org/10.1016/j.ijhydene.2007.06.028
- Chen, Q., Zeng, X., and Flandre, D., Impact of passivation layer on the subthreshold behavior of p-type CuO accumulation-mode thin-film transistors, Solid-State Electronics, 2024, vol. 214, 108878. https://doi.org/10.1016/j.sse.2024.10887
- Masudy-Panah, S., Siavash Moakhar, R., Chua, C.S., Tan, H.R., Wong, T.I., Chi. D., and Dalapati, G.K., Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting, ACS Appl. Mater. & Interfaces, 2016, vol. 8, p. 1206. https://doi.org/10.1021/acsami.5b09613
- Norouzi, A. and Nezamzadeh-Ejhieh, A., Investigation of the simultaneous interactions of experimental variables and mechanism pathway in the photodegradation of methylene blue by binary ZnO/Cu2O photocatalyst, Mater. Res. Bull., 2023, vol. 164, 112237. https://doi.org/10.1016/j.materresbull.2023.112237
- Çetinel, A., Characterization of octahedral Cu2O nanostructures grown on porous silicon by electrochemical deposition, Mater. Chem. and Phys., 2022, vol. 277, 125532. https://doi.org/10.1016/j.matchemphys.2021.125532
- Zhao, Y., Jiang, D., and Zhao, M., A spectrally selective self-powered photodetector utilizing a ZnO/Cu2O heterojunction, Appl. Surface Sci., 2023, vol. 636, 157800. https://doi.org/10.1016/j.apsusc.2023.157800
- Septina, W., Prabhakar, R.R., Wick, R., Moehl, T., and Tilley, S.D., Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes, Chem. Mater., 2017, vol. 29, p. 1735. https://doi.org/10.1021/acs.chemmater.6b05248
- Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction, Nat. Mater., 2011, vol. 10, p. 456. https://doi.org/10.1038/nmat3017
- Morales-Guio, C.G., Tilley, S.D., Vrubel, H., Grätzel, M., and Hu, X., Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst, Nat. Commun., 2014, vol. 5, p. 3059. https://doi.org/10.1038/ncomms4059
- Lim, Y-F., Chua, C.S., Lee, C.J.J., and Chi, D., Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 25928. https://doi.org/10.1039/C4CP03241A
- Tezcan, F., Mahmood, A., and Kardaş, G., The investigation of Cu2O electrochemical deposition time effect on ZnO for water splitting, J. Molecular Structure, 2019, vol. 1193, p. 342. https://doi.org/10.1016/j.molstruc.2019.05.052
- Ma, C., Liu, Z., Cai, Q., Han, C., and Tong, Z., ZnO photoelectrode simultaneously modified with Cu2O and Co-Pi based on broader light absorption and efficiently photogenerated carrier separation, Inorganic Chem. Frontiers, 2018, vol. 5, p. 2571. https://doi.org/10.1039/C8QI00596F
- Kang, Z., Yan, X., Wang, Y., Bai, Z., Liu, Y., Zhang, Z., Lin, P., Zhang, X., Yuan, H., Zhang, X., and Zhang, Y., Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, Scientific Reports, 2015, vol. 5, p.7882. https://doi.org/10.1038/srep07882
- Jiang, X., Lin, Q., Zhang, M., He, G., and Sun, Z., Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition, Nanoscale Res. Lett., 2015, vol. 10, p. 30. https://doi.org/10.1186/s11671-015-0755-0
- Abd-Ellah, M., Thomas, J.P., Zhang, L., and Leung, K.T., Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices, Solar Energy Mater. and Solar Cells, 2016, vol. 152, p. 87. http://dx.doi.org/10.1016/j.solmat.2016.03.022
- Zhao, Y., Zhao, M., Jiang, D., and Gu, J., Pyramidal island for enhance response in ZnO/Cu2O heterojunction self-powered photodetector, J. Luminescence, 2024, vol. 267, 120378. https://doi.org/10.1016/j.jlumin.2023.120378
- Zhou, P., Erning, J.W., and Ogle, K., Interactions between elemental components during the dealloying of Cu-Zn alloys, Electrochim. Acta, 2019, vol. 293, p. 290. https://doi.org/10.1016/j.electacta.2018.09.181
- Thomas, S., Cole, I.S., Sridhar, M., and Birbilis, N., Revisiting zinc passivation in alkaline solutions, Electrochim. Acta, 2013, vol. 97, p. 192. https://doi.org/10.1016/j.electacta.2013.03.008
- Dirkse, T.P. and Hampson, N.A., The anodic behavior of zinc in aqueous KOH solution – II. Passivation experiments using linear sweep voltammetry, Electrochim. Acta, 1972, vol. 17, p. 387. https://doi.org/10.1016/0013-4686(72)80037-9
- Zhou, P., Hutchison, M.J., Scully, J.R., and Ogle, K., The anodic dissolution of copper alloys: pure copper in synthetic tap water, Electrochim. Acta, 2016, vol. 191, p. 548. https://doi.org/10.1016/j. electacta.2016.01.093
- Chao, C.Y., Lin, L.F., and Macdonald, D.D., A point defect model for anodic passive films. I. Film growth kinetics, J. Electrochem. Soc., 1981, vol. 128, p. 1187. https://doi.org/10.1149/1.2127591
- Lin, L.F., Chao, C.Y., and Macdonald, D.D., A point defect model for anodic passive films. II. Chemical breakdown and pit initiation, J. Electrochem. Soc., 1981, vol. 128, p. 1194. https://doi.org/10.1149/1.2127592
- Vvedenskii, A., Grushevskaya, S., Ganzha, S., and Eliseev, D., Copper oxides: kinetics of formation and semiconducting properties. Part I. Polycrystalline copper and copper-gold alloys, J. Solid State Electrochem., 2014, vol. 18, p. 2755. https://doi.org/10.1007/s10008–014–2522-z
- Нестерова, М.Ю., Грушевская, С.Н., Введенский А.В. Фотоэлектрохимия оксидов меди, анодно сформированных на Cu–Zn сплавах, Конденсированные среды и межфазные границы. 2017. Т. 19. № 3. c. 384. [Nesterova, M. Yu., Grushevskaya, S.N., and Vvedenskii, A.V., Photoelectrochemistry of copper oxides anodically formed on Cu-Zn alloys, Condensed Matter and Interphase, 2017, vol. 19, no. 3, p. 384.] https://doi.org/10.17308/kcmf.2017.19/215
- Pawley, G.S., Unit-cell refinement from powder diffraction scans, J. Appl. Crystallography, 1981, vol. 14, p. 357. https://doi.org/10.1107/S0021889881009618
- Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G., The HighScore suit, Powder Diffraction, 2014, vol. 29, p. S13. https://doi.org/10.1017/S0885715614000840
- Dezfoolian, M., Rashchi, F., and Nekouei, R.K., Synthesis of copper and zinc oxides nanostructures by brass anodization in alkaline media, Surface and Coatings Technol., 2015, vol. 275, p. 245. https://doi.org/10.1016/j.surfcoat.2015.05.011
- Кудряшов, Д.А., Грушевская, С.Н., Ганжа, С.В., Введенский, А.В. Влияние ориентации кристаллической грани серебра и его легирования золотом на свойства тонких анодных пленок оксида Ag (I). Ч. 1. Фототок. Физикохимия поверхности и защита материалов. 2009. Т. 45. № 5. С. 451. [Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V., Effect of the crystal face orientation and alloying with gold on the properties of thin anodic films of Ag(I) oxide: I. Photocurrent, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 5, p. 501.] https://doi.org/10.1134/S2070205109050013
- Новый справочник химика и технолога. Общие сведения. Строение вещества. Физические свойства важнейших веществ. Ароматические соединения. Химия фотографических процессов. Номенклатура органических соединений. Техника лабораторных работ. Основы технологии. Интеллектуальная собственность, СПб.: НПО “Профессионал”, 2006. 1464 с. [New Handbook of Chemist and Technologist. General information. Structure of substances. Physical properties of the most important substances. Aromatic compounds. Chemistry of photographic processes. Nomenclature of organic compounds. Technique of laboratory works. Fundamentals of technology. Intellectual property (in Russian), Saint Petersburg: SEO “Professional”, 2006. 1464 p.]
- Collisi, U. and Strehblow, H.-H., The formation of Cu2O layers on Cu and their electrochemical and photoelectrochemical properties, J. Electroanal. Chem., 1990, vol. 284, p. 385. https://doi.org/10.1016/0022-0728(90)85046-8
- Vanalakar, S.A., Mali, S.S., Pawar, R.C., Dalavi, D.S., Mohalkar, A.V., Deshamukh, H.P., and Patil, P.S., Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application, Ceram. Intern., 2012, vol. 38, p. 6461. http://dx.doi.org/10.1016/j.ceramint.2012.05.023
- Hsu, Y.-K. and Lin, C.-M., Enhanced photoelectrochemical properties of ternary Zn1–xCuxO nanorods with tunable band gaps for solar water splitting, Electrochim. Acta, 2012, vol. 74, p. 73. http://dx.doi.org/10.1016/j.electacta.2012.03.165
- Hsu, Y.-K., Yu, C.-H., Chen, Y.-C., and Lin, Y.-G., Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting, Electrochim. Acta, 2013, vol. 105, p. 62. http://dx.doi.org/10.1016/j.electacta.2013.05.003
- Sunkara, S., Vendra, V.K., Kim, J.H., Druffel, T., and Sunkara, M.K., Scalable synthesis and photoelectrochemical properties of copper oxide nanowire arrays and films, Catalysis Today, 2013, vol. 199, p. 27. http://dx.doi.org/10.1016/j.cattod.2012.03.014
Supplementary files

Note
The article was presented by a participant in the All-Russian Conference “Electrochemistry-2023”, held from October 23 to October 26, 2023 in Moscow at the Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS.