Copper oxides on brasses of different phase composition: anode formation and photoelectrocatalytic activity

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Copper oxides in combination with other materials, for example, zinc oxide, are considered promising materials for photocatalytic processes of oxidation of organic impurities or photoelectrochemical water splitting. One of the methods for one-stage production of oxide structures of complex composition is the anodic oxidation of alloys. Evaluation of the photocatalytic or photoelectrochemical activity of the obtained materials is possible using photoelectrochemical parameters – the value of photocurrent or photopotential generated under illumination. The purpose of the work is to determine the effectiveness of using Cu(I) oxides, anodically formed in an alkaline solution on alloys of the Cu-Zn system with a zinc concentration of 34 to 50 at. %, in the process of photoelectrochemical decomposition of water. The elemental composition of the alloys was determined using energy-dispersive microanalysis. With increasing concentration of zinc in the studied concentration range, the phase composition changes from á- to β-phase, which is confirmed by the results of X-ray diffractometry. The change in the composition and structure of the alloy is reflected in the photoelectrochemical parameters of the anodic oxide films formed on it. The most promising material for photoelectrocatalytic transformations is an oxide film anodically formed in 0.1 M KOH on an alloy with a zinc concentration of 50 at. % and a β-phase structure. At a relatively low concentration of defects, the highest values of photocurrent are recorded in it at a high enough value of quantum efficiency.

Full Text

Restricted Access

About the authors

I. А. Belyanskaya

Voronezh State University

Author for correspondence.
Email: sg@chem.vsu.ru
Russian Federation, Voronezh

М. Yu. Bocharnikova

Voronezh State University

Email: sg@chem.vsu.ru
Russian Federation, Voronezh

S. N. Grushevskaya

Voronezh State University

Email: sg@chem.vsu.ru
Russian Federation, Voronezh

O. А. Kozaderov

Voronezh State University

Email: sg@chem.vsu.ru
Russian Federation, Voronezh

A. V. Vvedensky

Voronezh State University

Email: sg@chem.vsu.ru
Russian Federation, Voronezh

S. V. Kannykin

Voronezh State University

Email: sg@chem.vsu.ru
Russian Federation, Voronezh

References

  1. Wan, X., Zhu, G., Zhou, Z., and Guan, X., Recent progress on molecular catalysts integrated photoelectrochemical systems for water oxidation, Mater. Today Catal., 2024, vol. 4, 100042. https://doi.org/10.1016/j.mtcata.2024.100042
  2. Fu, L., Li, Z., and Shang, X., Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement, Intern. J. Hydrogen Energy, 2024, vol. 55, p. 611. https://doi.org/10.1016/j.ijhydene.2023.11.253
  3. Tezcan, F., A new synthesis route of Bi2S3 with solvothermal deposition in photoelectrochemical hydrogen production, J. Molec. Structure, 2024, vol. 1301, 137418. https://doi.org/10.1016/j.molstruc.2023.137418
  4. Nabgan, W., Alqaraghuli, H., Owgi, A.H.K., Ikram, M., Vo, D.-V.N., Jalil, A., Djellabi, R., Nordin, A.H., and Medina, F., A review on the design of nanostructure-based materials for photoelectrochemical hydrogen generation from wastewater: Bibliometric analysis, mechanisms, prospective, and challenges, Intern. J. Hydrogen Energy, 2024, vol. 52, Part C, p. 622. https://doi.org/10.1016/j.ijhydene.2023.05.152
  5. Becerra-Paniagua, D.K., Torres-Arellano, S., Martinez-Alonso, C., Luévano-Hipólito, E., and Sebastian, P.J., Facile and green synthesis of Cu/Cu2O composite for photocatalytic H2 generation, Mater. Sci. in Semiconductor Proc., 2023, vol. 162, 107485. https://doi.org/10.1016/j.mssp.2023.107485
  6. Arunodaya, J., Nayak, N., and Sahoo, T., Tailoring the optical and electrical behavior of Cu2O/ZnO heterojunction by varying the Zn2+ ion concentration for solar-cell applications, Micro and Nanostructures, 2023, vol. 174, 207488. https://doi.org/10.1016/j.micrna.2022.207488
  7. Alruwaili, M., Roy, A., Alhabradi, M., Yang, X., Chang, H., and Tahir, A.A., Heterostructured WO3–TiVO4 thin-film photocatalyst for efficient photoelectrochemical water splitting, Helyon, 2024, vol. 10, e25446. https://doi.org/10.1016/j.heliyon.2024.e25446
  8. Clarizia, L., Nadagouda, M.N., and Dionysiou, D.D., Recent advances and challenges of photoelectrochemical cells for hydrogen production, Current Opinion in Green and Sustainable Chem., 2023, vol. 41, 100825. https://doi.org/10.1016/j.cogsc.2023.100825
  9. Karaca, A.E. and Dincer, I., Development of a new photoelectrochemical system for clean hydrogen production and a comparative environmental impact assessment with other production methods, Chemosphere, 2023, vol. 337, 139367. https://doi.org/10.1016/j.chemosphere.2023.139367
  10. Azizi-Toupkanloo, H., Karimi-Nazarabad, M., Eftekhari, M., and Beshkani, A., Load transfer engineering via synergy of BiOI heterojunction with Ag and loading cocatalyst of La2O2CO3 in photoelectrochemical water splitting, Intern. J. Hydrogen Energy, 2024, vol. 57, p. 379. https://doi.org/10.1016/j.ijhydene.2023.12.197
  11. He, H., Liao, A., Guo, W., Luo, W., Zhou, Y., and Zou, Z., State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis, Nano Today, 2019, vol. 28, 100763. https://doi.org/10.1016/j.nantod.2019.100763
  12. Li, J., Cui, M., Guo, Z., Liu, Z., and Zhu, Z., Synthesis of dumbbell-like CuO–BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Mater. Lett., 2014, vol. 130, p. 36. https://doi.org/10.1016/j.matlet.2014.05.084
  13. Septina, W., Gunawan, Shobih, Monov, X.I., and Nursam, N.M., Improved performance of protected CuO photocathodes evaluated by photoelectrochemical characterizations using hydrogen peroxide, Mater. Lett., 2024, vol. 357, 135735. https://doi.org/10.1016/j.matlet.2023.135735
  14. Li, J., Feng, Qian, F., Guo, C., Wang, N., Chen, Z., and Wang L., Photoelectrochemical effect of Cu2O on the corrosion behavior of Cu in sodium sulfate solution, J. Mater. Sci. & Technol., 2023, vol. 160, p, 46. https://doi.org/10.1016/j.jmst.2023.03.020
  15. Somasundaram, S., Chenthamarakshan, C.R.N., de Tacconi, N.R., and Rajeshwar, K., Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors, Intern. J. Hydrogen Energy, 2007, vol. 32, p. 4661. https://doi.org/10.1016/j.ijhydene.2007.06.028
  16. Chen, Q., Zeng, X., and Flandre, D., Impact of passivation layer on the subthreshold behavior of p-type CuO accumulation-mode thin-film transistors, Solid-State Electronics, 2024, vol. 214, 108878. https://doi.org/10.1016/j.sse.2024.10887
  17. Masudy-Panah, S., Siavash Moakhar, R., Chua, C.S., Tan, H.R., Wong, T.I., Chi. D., and Dalapati, G.K., Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting, ACS Appl. Mater. & Interfaces, 2016, vol. 8, p. 1206. https://doi.org/10.1021/acsami.5b09613
  18. Norouzi, A. and Nezamzadeh-Ejhieh, A., Investigation of the simultaneous interactions of experimental variables and mechanism pathway in the photodegradation of methylene blue by binary ZnO/Cu2O photocatalyst, Mater. Res. Bull., 2023, vol. 164, 112237. https://doi.org/10.1016/j.materresbull.2023.112237
  19. Çetinel, A., Characterization of octahedral Cu2O nanostructures grown on porous silicon by electrochemical deposition, Mater. Chem. and Phys., 2022, vol. 277, 125532. https://doi.org/10.1016/j.matchemphys.2021.125532
  20. Zhao, Y., Jiang, D., and Zhao, M., A spectrally selective self-powered photodetector utilizing a ZnO/Cu2O heterojunction, Appl. Surface Sci., 2023, vol. 636, 157800. https://doi.org/10.1016/j.apsusc.2023.157800
  21. Septina, W., Prabhakar, R.R., Wick, R., Moehl, T., and Tilley, S.D., Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes, Chem. Mater., 2017, vol. 29, p. 1735. https://doi.org/10.1021/acs.chemmater.6b05248
  22. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction, Nat. Mater., 2011, vol. 10, p. 456. https://doi.org/10.1038/nmat3017
  23. Morales-Guio, C.G., Tilley, S.D., Vrubel, H., Grätzel, M., and Hu, X., Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst, Nat. Commun., 2014, vol. 5, p. 3059. https://doi.org/10.1038/ncomms4059
  24. Lim, Y-F., Chua, C.S., Lee, C.J.J., and Chi, D., Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 25928. https://doi.org/10.1039/C4CP03241A
  25. Tezcan, F., Mahmood, A., and Kardaş, G., The investigation of Cu2O electrochemical deposition time effect on ZnO for water splitting, J. Molecular Structure, 2019, vol. 1193, p. 342. https://doi.org/10.1016/j.molstruc.2019.05.052
  26. Ma, C., Liu, Z., Cai, Q., Han, C., and Tong, Z., ZnO photoelectrode simultaneously modified with Cu2O and Co-Pi based on broader light absorption and efficiently photogenerated carrier separation, Inorganic Chem. Frontiers, 2018, vol. 5, p. 2571. https://doi.org/10.1039/C8QI00596F
  27. Kang, Z., Yan, X., Wang, Y., Bai, Z., Liu, Y., Zhang, Z., Lin, P., Zhang, X., Yuan, H., Zhang, X., and Zhang, Y., Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, Scientific Reports, 2015, vol. 5, p.7882. https://doi.org/10.1038/srep07882
  28. Jiang, X., Lin, Q., Zhang, M., He, G., and Sun, Z., Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition, Nanoscale Res. Lett., 2015, vol. 10, p. 30. https://doi.org/10.1186/s11671-015-0755-0
  29. Abd-Ellah, M., Thomas, J.P., Zhang, L., and Leung, K.T., Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices, Solar Energy Mater. and Solar Cells, 2016, vol. 152, p. 87. http://dx.doi.org/10.1016/j.solmat.2016.03.022
  30. Zhao, Y., Zhao, M., Jiang, D., and Gu, J., Pyramidal island for enhance response in ZnO/Cu2O heterojunction self-powered photodetector, J. Luminescence, 2024, vol. 267, 120378. https://doi.org/10.1016/j.jlumin.2023.120378
  31. Zhou, P., Erning, J.W., and Ogle, K., Interactions between elemental components during the dealloying of Cu-Zn alloys, Electrochim. Acta, 2019, vol. 293, p. 290. https://doi.org/10.1016/j.electacta.2018.09.181
  32. Thomas, S., Cole, I.S., Sridhar, M., and Birbilis, N., Revisiting zinc passivation in alkaline solutions, Electrochim. Acta, 2013, vol. 97, p. 192. https://doi.org/10.1016/j.electacta.2013.03.008
  33. Dirkse, T.P. and Hampson, N.A., The anodic behavior of zinc in aqueous KOH solution – II. Passivation experiments using linear sweep voltammetry, Electrochim. Acta, 1972, vol. 17, p. 387. https://doi.org/10.1016/0013-4686(72)80037-9
  34. Zhou, P., Hutchison, M.J., Scully, J.R., and Ogle, K., The anodic dissolution of copper alloys: pure copper in synthetic tap water, Electrochim. Acta, 2016, vol. 191, p. 548. https://doi.org/10.1016/j. electacta.2016.01.093
  35. Chao, C.Y., Lin, L.F., and Macdonald, D.D., A point defect model for anodic passive films. I. Film growth kinetics, J. Electrochem. Soc., 1981, vol. 128, p. 1187. https://doi.org/10.1149/1.2127591
  36. Lin, L.F., Chao, C.Y., and Macdonald, D.D., A point defect model for anodic passive films. II. Chemical breakdown and pit initiation, J. Electrochem. Soc., 1981, vol. 128, p. 1194. https://doi.org/10.1149/1.2127592
  37. Vvedenskii, A., Grushevskaya, S., Ganzha, S., and Eliseev, D., Copper oxides: kinetics of formation and semiconducting properties. Part I. Polycrystalline copper and copper-gold alloys, J. Solid State Electrochem., 2014, vol. 18, p. 2755. https://doi.org/10.1007/s10008–014–2522-z
  38. Нестерова, М.Ю., Грушевская, С.Н., Введенский А.В. Фотоэлектрохимия оксидов меди, анодно сформированных на Cu–Zn сплавах, Конденсированные среды и межфазные границы. 2017. Т. 19. № 3. c. 384. [Nesterova, M. Yu., Grushevskaya, S.N., and Vvedenskii, A.V., Photoelectrochemistry of copper oxides anodically formed on Cu-Zn alloys, Condensed Matter and Interphase, 2017, vol. 19, no. 3, p. 384.] https://doi.org/10.17308/kcmf.2017.19/215
  39. Pawley, G.S., Unit-cell refinement from powder diffraction scans, J. Appl. Crystallography, 1981, vol. 14, p. 357. https://doi.org/10.1107/S0021889881009618
  40. Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G., The HighScore suit, Powder Diffraction, 2014, vol. 29, p. S13. https://doi.org/10.1017/S0885715614000840
  41. Dezfoolian, M., Rashchi, F., and Nekouei, R.K., Synthesis of copper and zinc oxides nanostructures by brass anodization in alkaline media, Surface and Coatings Technol., 2015, vol. 275, p. 245. https://doi.org/10.1016/j.surfcoat.2015.05.011
  42. Кудряшов, Д.А., Грушевская, С.Н., Ганжа, С.В., Введенский, А.В. Влияние ориентации кристаллической грани серебра и его легирования золотом на свойства тонких анодных пленок оксида Ag (I). Ч. 1. Фототок. Физикохимия поверхности и защита материалов. 2009. Т. 45. № 5. С. 451. [Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V., Effect of the crystal face orientation and alloying with gold on the properties of thin anodic films of Ag(I) oxide: I. Photocurrent, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 5, p. 501.] https://doi.org/10.1134/S2070205109050013
  43. Новый справочник химика и технолога. Общие сведения. Строение вещества. Физические свойства важнейших веществ. Ароматические соединения. Химия фотографических процессов. Номенклатура органических соединений. Техника лабораторных работ. Основы технологии. Интеллектуальная собственность, СПб.: НПО “Профессионал”, 2006. 1464 с. [New Handbook of Chemist and Technologist. General information. Structure of substances. Physical properties of the most important substances. Aromatic compounds. Chemistry of photographic processes. Nomenclature of organic compounds. Technique of laboratory works. Fundamentals of technology. Intellectual property (in Russian), Saint Petersburg: SEO “Professional”, 2006. 1464 p.]
  44. Collisi, U. and Strehblow, H.-H., The formation of Cu2O layers on Cu and their electrochemical and photoelectrochemical properties, J. Electroanal. Chem., 1990, vol. 284, p. 385. https://doi.org/10.1016/0022-0728(90)85046-8
  45. Vanalakar, S.A., Mali, S.S., Pawar, R.C., Dalavi, D.S., Mohalkar, A.V., Deshamukh, H.P., and Patil, P.S., Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application, Ceram. Intern., 2012, vol. 38, p. 6461. http://dx.doi.org/10.1016/j.ceramint.2012.05.023
  46. Hsu, Y.-K. and Lin, C.-M., Enhanced photoelectrochemical properties of ternary Zn1–xCuxO nanorods with tunable band gaps for solar water splitting, Electrochim. Acta, 2012, vol. 74, p. 73. http://dx.doi.org/10.1016/j.electacta.2012.03.165
  47. Hsu, Y.-K., Yu, C.-H., Chen, Y.-C., and Lin, Y.-G., Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting, Electrochim. Acta, 2013, vol. 105, p. 62. http://dx.doi.org/10.1016/j.electacta.2013.05.003
  48. Sunkara, S., Vendra, V.K., Kim, J.H., Druffel, T., and Sunkara, M.K., Scalable synthesis and photoelectrochemical properties of copper oxide nanowire arrays and films, Catalysis Today, 2013, vol. 199, p. 27. http://dx.doi.org/10.1016/j.cattod.2012.03.014

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of alloys of the Cu-Zn system.

Download (371KB)
3. Fig. 2. Anodic (a) and cathodic (b) voltammograms of Cu-Zn alloys in 0.1 M KOH.

Download (149KB)
4. Fig. 3. Anodic chronoamperograms on Cu-Zn alloys in 0.1 M KOH at E = –0.17 V.

Download (96KB)
5. Fig. 4. Dependence of photocurrent on the duration of anodic oxidation of Cu-Zn alloys.

Download (123KB)
6. Fig. 5. Dependence of photocurrent on the thickness of Cu(I) oxide on Cu-Zn alloys.

Download (187KB)
7. Fig. 6. Dependence of photopotential on time after completion of anodic oxidation of Cu-Zn alloys.

Download (126KB)

Note

The article was presented by a participant in the All-Russian Conference “Electrochemistry-2023”, held from October 23 to October 26, 2023 in Moscow at the Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS.


Copyright (c) 2024 Russian Academy of Sciences