Morphological and structural aspects of electrochemical catalysis of the reaction of oxygen reduction by the cobalt complex of sodium pectate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Oxygen reduction catalysts based on cobalt complexes of sodium pectate have been developed, which are interesting from the point of view of application in proton-exchange membrane fuel cells. They have been studied by electrochemistry and electron microscopy. As a result of the studies, the catalyst- leader with 15% substitution of sodium ions for Co2+ cations has been determined.

Texto integral

Acesso é fechado

Sobre autores

P. Enders

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Autor responsável pela correspondência
Email: enderspolina@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

E. Lebedeva

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: enderspolina@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

G. Nizameeva

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: enderspolina@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

R. Gainullin

Kazan National Research Technological University

Email: enderspolina@mail.ru
Rússia, Kazan

S. Minzanova

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: enderspolina@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

E. Galeeva

Kazan National Research Technological University

Email: enderspolina@mail.ru
Rússia, Kazan

Z. Mezhevich

Kazan National Research Technological University

Email: enderspolina@mail.ru
Rússia, Kazan

E. Nefedev

Kazan National Research Technological University

Email: enderspolina@mail.ru
Rússia, Kazan

K. Kholin

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: enderspolina@mail.ru

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

M. Kadirov

FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: kamaka59@gmail.com

Arbuzov Institute of Organic and Physical Chemistry

Rússia, Kazan; Kazan

Bibliografia

  1. Thandavarayan, S. and Viswanathan, S., Electrocatalysts for Low Temperature Fuel Cells. Fundamentals and Recent Trends. Weinheim, Germany: Wiley VCH, 2017. 616 p.
  2. Tarasevich, M.R., Sadkovski, A., and Yeager, E., Comprehensive Treatise of Electrochemistry. V. 7. Kinetics and Mechanism of Electrode Processes / Eds. Conway, B.E., Bockris, J.O.M., and Yeager, E. N.Y., London: Plenum Press, 1983, p. 301.
  3. Ramaswamy, N. and Mukerjee, S., Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media, Adv. Phys. Chem., 2012, p. 1.
  4. Тарасевич, М.Р., Хрущева, Е.И., Филиновский, В.Ю. Вращающийся дисковый электрод с кольцом. М.: Наука, 1987. 247 c. [Tarasevich, M.R., Khrustcheva, E.I., and Philinovskii, V. Yu., Rotating ring disk electrode (in Russian), M.: Nauka, 1987. 247 p.]
  5. Ma, R., Gaoxin, Lin, Yao, Zhou, Qian, Liu, Tao, Zhang, Guangcun, Shan, Minghui, Yang, and Jiacheng, Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, Comput. Mater., 2019, vol. 5, p. 78.
  6. Park, J.-W. and Seo, J., Ultrafine TaOx/CB Oxygen reduction Electrocatalysts Operating in Both Acidic and Alkaline Media, Catalysts, 2022, vol. 12(1), no. 35.
  7. Богдановская, В.А., Кольцова, Е.М., Тарасевич, М.Р., Радина, М.В., Жутаева, Г.В., Кузов, А.В., Гаврилова, Н.Н. Активные и стабильные катализаторы для топливных элементов на основе нанотрубок, модифицированных платиной. Электрохимия. 2016. Т. 52. С. 810. [Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly Active and Stable Catalysts Based on Nanotubes and Modified Platinum for Fuel Cells, Russ. J. Electrochem., 2016, vol. 52, p. 723.]
  8. Тарасевич, М.Р., Корчагин, О.В. Электрокатализ и рН. Электрохимия. 2013. Т. 49. С. 676. [Tarasevich, M.R. and Korchagin, O.V., Electrocatalysis and pH (a review), Russ. J. Electrochem., 2013, vol. 49, p. 600.]
  9. Shinozak, K., Zack, J.W., Richards, R.M, Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections, J. Electrochem. Soc., 2015, vol. 162, no.10, p. 162.
  10. Li, L., Hu, L., Li, J., and We, Z., Enhanced stability of Pt nanoparticles electrocatalysts for fuel cells, Nano Res., 2015, vol. 3, p. 418.
  11. Capelo, A., Esteves, M.A., de Sa, A.I., Silva, R.A., Cangueiro, L., Almeida, A., Vilar, R., and Rangel, C.M., Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support, Intern. J. Hydrogen Energy, 2016, vol. 41, p. 12962.
  12. Su, L., Jia, W.Z., Li, C.M., and Lei, Y., Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells, ChemSus Chem., 2014, vol. 7, p. 361.
  13. Timperman, L., Feng, Y.J., Vogel, W., and AlonsoVant, N., Substrate effect on oxygen reduction electrocatalysis, Electrochim. Acta, 2010, vol. 55, p. 7558.
  14. Dubau, L., Castanheira, L., Maillard, F., Chatenet, M., Lottin, O., Maranzana, G., Dillet, J., Lamibrac, A., Perrin, J.C., and Moukheiber, E., A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies, WIREs: Energy Environ, 2014, vol. 3, p. 540.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme. Scheme for the synthesis of cobalt complexes of sodium pectate.

Baixar (427KB)
3. Fig. 1. CBA curve of Co(15%)-NaPG in 0.5 M H2SO4 aqueous solution showing the amplitude of the oxygen reduction peak (left) and the chronoamperometric curve at a potential of -0.3 V (right). The sweep rate of the potential is 50 mV/s.

Baixar (254KB)
4. Fig. 2. Linear voltammetry curves of Co(15%)-NaPG in 0.5 M H2SO4 aqueous solution obtained at different VDE rates (left) and Koutetsky-Levich dependence for RVC. The potential sweep rate is 50 mV/s.

Baixar (275KB)
5. Fig. 3. Morphological characteristics and amplitudes of the oxygen reduction peak on the CVA curves of Co(n%)-NaPG samples from the cobalt content (a); PEM (b) and AFM (c) images of Co-NaPG aggregates with 15% cobalt content and the topographic histogram corresponding to the AFM image (d).

Baixar (1MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024