A TWO-POINT COLLOCATION METHOD FOR THE NUMERICAL SOLUTION OF ONE-DIMENSIONAL HYPERSINGULAR INTEGRAL EQUATIONS ON NONUNIFORM PARTITIONS
- Авторлар: Nenashev A.S.1
-
Мекемелер:
- Sirius University of Science and Technology, Krasnodar region, “Sirius” Federal Territory, Russia Marchuk Institute of Numerical Mathematics of RAS
- Шығарылым: Том 60, № 9 (2024)
- Беттер: 1261–1275
- Бөлім: NUMERICAL METHODS
- URL: https://kazanmedjournal.ru/0374-0641/article/view/649616
- DOI: https://doi.org/10.31857/S0374064124090088
- EDN: https://elibrary.ru/JWKVJQ
- ID: 649616
Дәйексөз келтіру
Аннотация
A quadrature formula has been constructed for calculating the hypersingular integral over a segment, which uses the ends of the segment partition intervals as nodes of piecewise constant interpolation of the integral density, as well as specially selected collocation points. A distinctive feature of the proposed quadrature formula is the ability to calculate the integral of functions that suffer a finite number of discontinuities of the first kind on the integration interval. On the basis of quadrature formula constructed, a numerical scheme for solving the characteristic hypersingular integral equation on non-regular grid is developed. Estimate of the rate of convergence of approximate solutions to exact ones is proved in the class of piecewise Ho¨lder functions.
Негізгі сөздер
Авторлар туралы
A. Nenashev
Sirius University of Science and Technology, Krasnodar region, “Sirius” Federal Territory, Russia Marchuk Institute of Numerical Mathematics of RAS
Email: nenashev.as@talantiuspeh.ru
Moscow, Russia
Әдебиет тізімі
- Лифанов, И.К. Метод сингулярных интегральных уравнений и численный эксперимент в математической физике, аэродинамике, теории упругости и дифракции волн / И.К. Лифанов. — М. : ТОО “Янус”, 1995. — 519 с.
- Мусхелишвили, Н.И. Сингулярные интегральные уравнения / Н.И. Мусхелишвили. — 3-е изд., испр. и доп. — М. : Наука, 1968. — 511 с.
- Дворак, А.В. Модифицированный метод дискретных вихрей для решения сингулярных интегральных уравнений на отрезке / А.В. Дворак, Е.М. Ивенина, С.В. Филимонов // Науч. вестн. Моск. гос. техн. ун-та гражданской авиации. — 2011. — С. 103–106.
- Сетуха, А.В. Сходимость численного метода решения гиперсингулярного интегрального уравнения на отрезке с применением кусочно-линейных аппроксимаций на неравномерной сетке / А.В. Сетуха // Дифференц. уравнения. — 2017. — Т. 53, № 2. — С. 237–249.
- Ненашев, А.С. Модификация метода дискретных особенностей для неравномерных сеток в приложении к одномерным интегральным уравнениям с сильной особенностью в ядре / А.С. Ненашев // Дифференц. уравнения. — 2022. — Т. 58, № 8. — С. 1078–1089.
- Лифанов, И.К. Гиперсингулярные интегральные уравнения и теория проволочных антенн / И.К. Лифанов, А.С. Ненашев // Дифференц. уравнения. — 2005. — Т. 41, № 1. — С. 121–137.
- Лифанов И.К. Исследование некоторых вычислительных схем для гиперсингулярного интегрального уравнения на отрезке / И.К. Лифанов, А.С. Ненашев // Дифференц. уравнения. — 2005. — Т. 41, № 9. — С. 1270–1275.
- Шилов, Г.Е. Математический анализ. Спец. курс / Г.Е. Шилов. — 2-е изд. — М. : Физматгиз, 1961. — 436 с.
Қосымша файлдар
