SOLVING OF ONE-DIMENSIONAL HYPERSINGULAR INTEGRAL EQUATION USING HAAR’S WAVELETS
- 作者: Kogtenev D.A.1, Zamarashkin N.L.1
-
隶属关系:
- Marchuk Institute of Numerical Mathematics of RAS
- 期: 卷 60, 编号 9 (2024)
- 页面: 1241–1260
- 栏目: NUMERICAL METHODS
- URL: https://kazanmedjournal.ru/0374-0641/article/view/649615
- DOI: https://doi.org/10.31857/S0374064124090071
- EDN: https://elibrary.ru/JWONRU
- ID: 649615
如何引用文章
详细
We constructed a numerical method for the one-dimensional hypersingular integral equation which uses sparse matrix approximations. This method has the same convergence order as conventional methods for hypersingular integral equations but the new method is more effective in both memory and arithmetic operations.
作者简介
D. Kogtenev
Marchuk Institute of Numerical Mathematics of RAS
Email: kogtenev.da@phystech.edu
Moscow, Russia
N. Zamarashkin
Marchuk Institute of Numerical Mathematics of RAS
编辑信件的主要联系方式.
Email: nikolai.zamarashkin@gmail.com
Moscow, Russia
参考
- Gakhov, F.D., Boundary Value Problems, Oxford: Pergamon Press, 1966.
- Setukha, A.V., Chislennyi metody v integral’nykh uravneniakh ee ikh prilozhenia (Numerical Methods for Integral Equations and their Applications), Moscow: Argamak-Media, 2014.
- Zakharov, E.V., Ryzhakov, G.V., and Setukha, A.V., Numerical solution of 3D problems of electromagnetic wave difraction on a system of ideally conducting surfaces by the method of hypersingular integral equations, Differ. Equat., 2014, vol. 55, no. 9, pp. 1240–1251.
- Beylkin, G., Koifman, R., and Rokhlin, V., Fast wavelet transforms and numerical algorithms, I, Comm. Pure Appl. Math., 2019, vol. 44, pp. 141–183.
- Chen, Z., Micchelli, C.A., and Xu, Y., Multiscale Methods for Fredholm Integral Equations, Cambridge: Cambridge University Press, 2015.
- Aparinov, A.A., Setukha, A.V., and Stavtsev, S.L., Low rank methods of approximation in an electromagnetic problem, Lobachevskii J. Math., 2019, vol. 40, no. 11, pp. 1771–1780.
- Amaratunga, K. and Castrillon-Candas, J.E., Surface wavelets: a multiresolution signal processing tool for 3D computational modelling, Int. J. Numer. Meth. Engng., 2001, vol. 55, no. 3, pp. 239–271.
- Saad, Y. and Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 1986, vol. 7, no. 3, pp. 856–869.
补充文件
