On the spectrum of non-selfadjoint Dirac operators with two-point boundary conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider spectral problem for the Dirac operator with arbitrary two-point boundary conditions and any square integrable potential . The necessary and sufficient conditions are established that an entire function must satisfy in order to be a characteristic determinant of the specified operator. In the case of irregular boundary conditions, conditions are found under which a set of complex numbers is the spectrum of the problem under consideration.

Full Text

Restricted Access

About the authors

A. S. Makin

Peoples’ Friendship University of Russia

Author for correspondence.
Email: alexmakin@yandex.ru
Russian Federation, Moscow

References

  1. Albeverio, A. Inverse spectral problems for Dirac operators with summable potentials / A. Albeverio, R. Hryniv, Ya. Mykytyuk // Russ. J. Math. Phys. — 2005. — V. 12, № 4. — P. 406–423.
  2. Lunyov A. On the Riesz basis property of root vectors system for 2×2 Dirac type operators / A. Lunyov, M. Malamud // J. Math. Anal. Appl. — 2016. — V. 441, № 1. — P. 57–103.
  3. Savchuk, A.M. The Dirac operator with complex-valued summable potential / A.M. Savchuk, A.A. Shkalikov // Math. Notes. — 2014. — V. 96, № 5. — P. 777–810.
  4. Savchuk, A.M. Spectral analysis of one-dimensional Dirac system with summable potential and Sturm–Liouville operator with distribution coefficients / A.M. Savchuk, I.V. Sadovnichaya // Contemporary Mathematics. Fundamental Directions. — 2020. — V. 66, № 3. — P. 373–530.
  5. Misyura, T.V. Characterization of spectra of periodic and anti-periodic problems generated by Dirac’s operators. II / T.V. Misyura // Theoriya functfii, funct. analiz i ikh prilozhen. — 1979. — V. 31. — P. 102–109. [in Russian]
  6. Nabiev, I.M. Solution of the quasiperiodic problem for the Dirac system / I.M. Nabiev // Math. Notes. —2011. — V. 89, № 6. — P. 845–852.
  7. Djakov, P. Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions / P. Djakov, B. Mityagin // Indiana Univ. Math. J. — 2012. — V. 61. — P. 359–398.
  8. Yurko, V.A. Inverse spectral problems for differential systems on a finite interval / V.A. Yurko // Results in Mathematics. — 2005. — V. 48, № 3–4. — P. 371–386.
  9. Makin, A.S. On the spectrum of two-point boundary value problems for the Dirac operator / A.S. Makin // Differ. Equat. — 2021. — V. 57, № 8. — P. 993–1002.
  10. Tkachenko, V. Non-self-adjoint periodic Dirac operators / V. Tkachenko // Oper. Theory: Adv. and Appl. —2001. — V. 123. — P. 485–512.
  11. Marchenko, V.A. Sturm–Liouville operators and their applications / V.A. Marchenko. — Basel : Birkhauser Verlag, 1986.
  12. Tkachenko, V. Non-self-adjoint periodic Dirac operators with finite-band spectra / V. Tkachenko // Int. Equ. Oper. Theory. — 2000. — V. 36. — P. 325–348.
  13. Levin, B.Ya. Lectures on Entire Functions / B.Ya. Levin . — Providence : American Mathematical Society, 1996.
  14. Levin, B.Ya. On small perturbations of the set of zeros of functions of sine type / B.Ya. Levin, I.V. Ostrovskii // Math. USSR-Izv. — 1980. — V. 14, № 1. — P. 79–101.
  15. Lavrentiev, M.A. Methods of Theory of Complex Variable / M.A. Lavrentiev, B.V. Shabat. — Moscow : Nauka, 1973. — 736 p. [in Russian]
  16. Sansug, J.-J. Characterization of the periodic and antiperiodic spectra of nonselfadjoint Hill’s operators / J.-J. Sansug, V. Tkachenko // Oper. Theory Adv. and Appl. — 1997. — V. 98. — P. 216–224.
  17. Nikolskii, S.M. Approximation of Functions of Several Variables and Embedding Theorems / S.M. Nikolskii. —Moscow : Nauka, 1977. — 456 p. [in Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences