USING OPERATOR INEQUALITIES IN STABILITY RESEARCH OF DIFFERENCE SCHEMES FOR NONLINEAR BOUNDARY PROBLEMS WITH NONLINEARITY OF UNLIMITED GROWTH
- Authors: Matus P.P1
-
Affiliations:
- Institute of Mathematics of NAS of Belarus
- Issue: Vol 60, No 6 (2024)
- Pages: 830-843
- Section: NUMERICAL METHODS
- URL: https://kazanmedjournal.ru/0374-0641/article/view/649517
- DOI: https://doi.org/10.31857/S0374064124060088
- EDN: https://elibrary.ru/KVXBUY
- ID: 649517
Cite item
Abstract
The article develops the theory of stability of linear operator schemes for operator inequalities and nonlinear nonstationary initial-boundary value problems of mathematical physics with nonlinearities of unlimited growth. Based on sufficient conditions for the stability of A.A. Samarsky’s two-layer and three-layer difference schemes, the corresponding a priori estimates for operator inequalities are obtained under the condition of the criticality of the difference schemes under consideration, i.e. when the difference solution and its first time derivative are non-negative at all nodes of the grid region. The results obtained are applied to the analysis of the stability of difference schemes that approximate the Fisher and Klein-Gordon equation with a nonlinear right-hand side.
Keywords
About the authors
P. P Matus
Institute of Mathematics of NAS of Belarus
Email: piotr.p.matus@gmail.com
Minsk, Belarus
References
- Samarskij, A.A., Teoriya raznostnyh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977
- Samarskij, A.A. and Gulin, A.A., Ustojchivost’ raznostnyh skhem (Stability of Difference Schemes), Moscow: Nauka, 1973.
- Vabishchevich, P.N., Additivnye operatorno-raznostnye skhemy (Additive Operator-Difference Schemes), Moscow: Krasand, 2019.
- Matus, P. Stability of difference schemes for nonlinear time-dependent problems / P. Matus // Comput. Meth. Appl. Math. — 2003. — V. 3, № 2. — P. 313–329.
- Matus, P. On convergence of difference schemes for IBVP for quasilinear parabolic equation with generalized solutions / P. Matus // Comput. Meth. Appl. Math. — 2014. — V. 14, № 3. — P. 361–371.
- Matus, P.P. and Chujko, M.M., Issledovanie ustojchivosti i skhodimosti raznostnyh skhem dlya politropnogo gaza s dozvukovymi techeniyami, Differ. Uravn., 2009, vol. 45, no. 7, pp. 1053–1064.
- Matus, P. Nonlinear stability for equations of isentropic gas dynamics / P. Matus, A. Kolodynska // Comput. Meth. Appl. Math. — 2008. — V. 8, № 2. — P. 155–170.
- Matus, P.P., Ustojchivost’ po nachal’nym dannym i monotonnost’ neyavnoj raznostnoj skhemy dlya odnorodnogo uravneniya poristoj sredy s kvadratichnoj nelinejnost’yu, Differ. Uravn., 2010, vol. 46, no. 7, pp. 1011–1021.
- Matus, P.P., O korrektnosti raznostnyh skhem dlya polulinejnogo uravneniya s obobshchennymi resheniyami, Zhurn. Vychislit. Matem. i Matem. Fiz., 2010, vol. 50, no. 12, pp. 2155–2175.
- Matus, P. The maximum principle and same its applications / P. Matus // Comput. Meth. Appl. Math. — 2002. — V. 2, № 1. — P. 50–91.
- Lemeshevskij, S.V., Makarov, E.K., and Matus, P.P., Lemma Bihari i ee primenenie k issledovaniyu ustojchivosti nelinejnyh raznostnyh skhem, Dokl. NAN Belarusi, 2010, vol. 54, no. 1, pp. 5–9.
- Demidovich, V.B., Ob odnom priznake ustojchivosti raznostnyh uravnenij, Differ. Uravn., 1969, vol. 5, no. 7, pp. 1247–1255
- Kolmogorov, A.N., Petrovskij, I.G., and Piskunov, N.S., Issledovaniya uravneniya diffuzii, soedinyonnoj s vozrastaniem kolichestva veshchestva i ego primenenie k odnoj biologicheskoj probleme, Bull. Mosk. Gos. Un-ta. Sekciya A, 1937, vol. 1, no. 6, pp. 1–25.
- Fisher, R.A. The wave of advance of advantageous genes / R.A. Fisher // Ann. Hum. Genetic. — 1937. — V. 7, № 4. — P. 353–369.
- Murray, J.D. Mathematical Biology: an Introduce / J.D. Murray. — Berlin, 2001. — 551 p.
- Matus, P.P. and Utebaev, B.D., Kompaktnye i monotonnye raznostnye skhemy dlya parabolicheskih uravnenij, Mat. Modelirovanie, 2021, vol. 33, no. 4, pp. 60–78.
- Matus, P.P. and Pylak, D., Globally stable difference schemes for the Fisher equation, Differ. Equat., 2023, vol. 59, no. 7, pp. 962–969.
- Caudrey, P.J. The sine-Gordon as a model classical fied theory / P.J. Caudrey // Nuovo Cimento. — 1975. — V. 25, № 2. — P. 497–511.
- Galiktionov, V.A., Kurdyumov, S.P., Mihajlov, A.P., and Samarskij, A.A., O sravnenii reshenij parabolicheskih uravnenij, Dokl. AN SSSR, 1979, vol. 248, no. 3, pp. 586–589.
- Galiktionov, V.A., Usloviya kritichnosti i teoremy sravneniya raznostnyh reshenij nelinejnyh parabolicheskih uravnenij, Zhurn. Vychisl. Matem. i Matem. Fiz., 1983, vol. 23, no. 1. pp. 109–118.
- Samarskii, A.A. Difference schemes with operator factors / A.A. Samarskii, P.P. Matus, P.N. Vabishchevich. — Dordrech : Kluwer, 2002. — 384 p.
- Matus, P. Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations / P. Matus, L.M. Hieu, L.G. Vulkov // J. Comput. Appl. Math. — 2017. — V. 310. — P. 186–199.
Supplementary files
