SOLUTION OF THE SPECTRUM ALLOCATION PROBLEM FOR A LINEAR CONTROL SYSTEM WITH CLOSED FEEDBACK
- Авторлар: Zubova S.P1, Raetskaya E.V2
-
Мекемелер:
- Voronezh State University
- Voronezh State Forestry University named after G.F. Morozov
- Шығарылым: Том 60, № 6 (2024)
- Беттер: 798-816
- Бөлім: CONTROL THEORY
- URL: https://kazanmedjournal.ru/0374-0641/article/view/649515
- DOI: https://doi.org/10.31857/S0374064124060065
- EDN: https://elibrary.ru/KWCWHQ
- ID: 649515
Дәйексөз келтіру
Аннотация
The method for constructing a feedback matrix to solve the problem spectrum allocation (spectrum control, pole assignment) for linear dynamic system is given. A new proof of the well-known theorem about the connection between the complete controllability of a dynamic system with existence of the feedback matrix is formed in the process of construction by the cascade decomposition method. The entire set of arbitrary elements that influence the non-uniqueness of the matrix is identified. Examples of constructing a feedback matrix in the case of a real spectrum and in the presence of complex conjugate eigenvalues, as well as for the case of multiple eigenvalues, are given. The stability of the specified spectrum under small perturbations of the system parameters with a fixed feedback matrix is studied.
Авторлар туралы
S. Zubova
Voronezh State University
Email: spzubova@mail.ru
Russia
E. Raetskaya
Voronezh State Forestry University named after G.F. Morozov
Email: raetskaya@inbox.ru
Russia
Әдебиет тізімі
- Shumafov, M.M., Stabilization of linear control systems. The problem of pole assignment. Review, Vestnik SPbGU. Mathematika. Mechanika. Astronomija, 2019, vol. 6 (64), no. 4, pp. 564–591.
- Zubov, V.I., Teoriya optimal’nogo upravleniya (Optimal Control Theory), Leningrad: Sudpromgiz, 1966.
- Wonham, W.M. On pole assignment in multi-input controllable linear systems / W.M. Wonham // IEEE Trans. Aut. Contr. — 1967. — V. AC–12, № 6. — P. 660–665.
- Leonov, G.A. and Shumafov, M.M. Metodu stabilizacii lineinuh ypravlaemuh sistem (Methods for Stabilization of Linear Controlled Systems), SPb.: SPbSU Press, 2005.
- Zubov, N.E., Mikrin, E.A, and Rjabchen, V.N., Matrichnye metody v teorii i praktike avtomaticheskogo upravlenija letatelnuh apparatov (Matrix Methods in the Theory and Practice of Automatic Control of Aircrafts), Moscow: Izd-vo MGTU im. Baymana (Bauman Press), 2016.
- Lapin, A.V. and Zubov, N.E., Implementation in the MATLAB environment of analytical algorithms for modal control by state and by exit, Inzhenernuj zhurnal: nauka i innivacii (Engineering Journal: Science and Innovation), 2020, vol. 1, pp. 1–16.
- A unified method arbitrary pole placement / R. Schmid, L. Ntogramatzidis, T. Nguyen, A. Pandey // Automatika. — 2014. — V. 50. — P. 2150–2154.
- Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P. Zubova, E.V. Raetskaya // Math. Methods in the Appl. Sci. — 2021. — V. 44, № 15. — P. 11998–12009.
- Zubova, S.P. and Raetskaya, E.V., Algorithm to solve linear multipoint problems of control by the method of cascade decomposition, Automation and Remote Control, 2017, vol. 78, no. 7, pp. 1189–1202.
- Zubova, S.P., Solution of inverse problems for linear dynamical systems by the cascade method, Dokl. Math., 2012, vol. 86, no. 3, pp. 846–849.
- Zubova, S.P., Solution of the control problem for linear descriptor system with rectangular coefficient matrix, Math. Notes, 2010, vol. 88, no. 5–6, pp. 844–854.
- Zubova, S.P., Trung, L.H., and Raetskaya, E.V., On polinomial solutions of the linear stationary control system, Automation and Remote Control, 2008, vol. 69, no. 11, pp. 1852–1858.
- Atkinson, F.V., Normal solvability of linear equations in normed spaces, Mat. Sbornik, 1951, vol. 28 (70), no. 1, pp. 3–14.
- Bortakovsky, A.S. and Panteleev, A.V., Lineinaja algebra v primerah i zadachach (Linear Algebra in Examples and Problems), Moscow, 2005.
- Andreev, U.N., Ypravlenie konechnomernumi lineinumi objektami (Control of Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.
- Vainberg, M.M. and Trenogin, V.A., Teorija vetvlenija reshenij nelineinuh yravnenij (Branching Theory for Solutions to Nonlinear Equations), Moscow: Nauka, 1969.
Қосымша файлдар
