Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamic conformal transformation method has been generalized for the first time to numerically simulate the capillary wave turbulence of a liquid surface in the plane symmetric anisotropic geometry. The model is strongly nonlinear and involves effects of surface tension, as well as energy dissipation and pumping. Simulation results have shown that the system of nonlinear capillary waves can pass to the quasistationary chaotic motion regime (wave turbulence). The calculated exponents of spectra do not coincide with those for the classical Zakharov–Filonenko spectrum for isotropic capillary turbulence but are in good agreement with the estimate obtained under the assumption of the dominant effect of five-wave resonant interactions.

Sobre autores

E. Kochurin

Institute of Electrophysics, Russian Academy of Sciences;Skolkovo Institute of Science and Technology

Autor responsável pela correspondência
Email: kochurin@iep.uran.ru
620016, Yekaterinburg, Russia;121205, Moscow, Russia

Bibliografia

  1. V. E. Zakharov, G. Falkovich, and V. S. L'vov, Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer-Verlag, Berlin (1992).
  2. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, Phys. Rep. 542(1), 1 (2014).
  3. S. Galtier, J. Phys. A Math. Theor. 51(29), 293001 (2018).
  4. S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63(5), 447 (2000).
  5. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, Phys. Rev. E 105(6), L063101 (2022).
  6. S. Dorbolo and E. Falcon, Phys. Rev. E 83(4), 046303 (2011).
  7. I. A. Dmitriev, E. A. Kochurin, and N. M. Zubarev, IEEE Trans. Dielectr. Electr. Insul. 304, 1408 (2023).
  8. В. Е. Захаров, Р. З. Сагдеев, Докл. АН СССР 192(2), 297 (1970)
  9. V. E. Zakharov and R. Z. Sagdeev, Sov. Phys. Dokl. 15, 439 (1970).
  10. A. Gri n, G. Krstulovic, V. S. L'vov, and S. Nazarenko, Phys. Rev. Lett. 128, 224501 (2022).
  11. Е. А. Кочурин, Е. А. Кузнецов, Письма в ЖЭТФ 116(12), 830 (2022)
  12. E. A. Kochurin and E. A. Kuznetsov, JETP Lett. 116(12), 863 (2022).
  13. В. Е. Захаров, Н. Н. Филоненко, ПМТФ 8(6), 62 (1967)
  14. V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 8, 37 (1967).
  15. A. O. Korotkevich, Phys. Rev. Lett. 130(26), 264002 (2023).
  16. Z. Zhang and Y. Pan, Phys. Rev. E 106(4), 044213 (2022).
  17. G. V. Kolmakov, M. Y. Brazhnikov, A. A. Levchenko, L. V. Abdurakhimov, P. V. E. McClintock, and L. P. Mezhov-Deglin, Prog. Low Temp. Phys. 16, 305 (2009).
  18. E. Falcon and N. Mordant, Annu. Rev. Fluid Mech. 54, 1 (2022).
  19. A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).
  20. L. Deike, D. Fuster, M. Berhanu, and E. Falcon, Phys. Rev. Lett. 112, 234501 (2014).
  21. Y. Pan and D. K. P. Yue, Phys. Rev. Lett. 113, 094501 (2014).
  22. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, Pis'ma v ZhETF 112(12), 799 (2020)
  23. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, JETP Lett. 112(12), 757 (2020).
  24. G. Ricard and E. Falcon, Europhys. Lett. 135(6), 64001 (2021).
  25. S. Nazarenko, Wave turbulence, Springer-Verlag, Berlin (2011), v. 825.
  26. A. Dyachenko, Y. Lvov, and V. E. Zakharov, Physica D 87, 233 (1995).
  27. A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov, Physica D 321, 51 (2016).
  28. A. C. Newell and B.Rumpf, Annu. Rev. Fluid Mech. 43, 59 (2011).
  29. S. Walton and M. B. Tran, SIAM J. Sci.Comput. 45(4), B467 (2023).
  30. L. V. Ovsjannikov, Arch. Mech. 26, 6 1974.
  31. A. I. Dyachenko, E. A. Kuznetsov, M. Spector, and V. E. Zakharov, Phys. Lett. A 221, 736 (1996).
  32. V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B Fluids 21, 283 (2002).
  33. S. Tanveer, Proc. R. Soc. A: Math. Phys. Sci. 435(1893), 137 (1991).
  34. S. Tanveer, Proc. R. Soc. A: Math. Phys. Sci. 441(1913), 501 (1993).
  35. S. A. Dyachenko, Stud. Appl. Math. 148(1), 125 (2022).
  36. В. П. Рубан, ЖЭТФ 157(5), 944 (2020)
  37. V. P.Ruban, JETP 130, 797 (2020).
  38. S. Dyachenko and A. C. Newell, Stud. Appl. Math. 137, 199 (2016).
  39. А. О. Короткевич, А. О. Прокофьев, В. Е. Захаров, Письма в ЖЭТФ 109(5), 312 (2019)
  40. A. O. Korotkevich, A. Proko ev, and V. E. Zakharov, JETP Lett. 109, 309 (2019).
  41. A. Nachbin, Physica D 445, 133646 (2023).
  42. T. Gao, A. Doak, J. M. Vanden-Broeck, and Z. Wang, Eur. J. Mech. B Fluids 77, 98 (2019).
  43. M. V. Flamarion, T. Gao, R. Ribeiro-Jr, and A. Doak, Phys. Fluids 34, 127119 (2022).
  44. Е. А. Кочурин, ПМТФ 59(1), 91 (2018)
  45. E. A. Kochurin, J. Appl. Mech. Tech. Phys. 59, 79 (2018).
  46. S. Murashige and W. Choi, J.Comput. Phys. 328, 234 (2017).
  47. J. Shelton, P. Milewski, and P. H. Trinh, J. Fluid Mech. 972, R6 (2023).
  48. L. Kayal, S. Basak, and R. Dasgupta, J. Fluid Mech. 951, A26 (2022).
  49. E. Herbert, N. Mordant, and E. Falcon, Phys. Rev. Lett. 105, 144502 (2010).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023