Low-frequency Raman spectroscopy of human hair keratins

Capa

Citar

Texto integral

Resumo

Low-frequency Raman lines characterizing vibrations of elements of the secondary structure of fibrillar proteins (keratins) are identified. Experiments with unpigmented human hair are performed in two configurations: with excitation radiation focused coaxially with the hair and perpendicularly to it. Based on polarization sensitivity, the bands at frequencies of 150 and 221 cm-1 are assigned to vibrations of the α-helical structures of keratins. Spectral interval of 270–340 cm-1 is assigned to vibrations of β-structures.

Sobre autores

E. Travkina

Lomonosov Moscow State University

Email: travkina.el19@physics.msu.ru
Faculty of Physics, Department of General Physics and Wave Processes Moscow, Russia

A. Chikishev

Lomonosov Moscow State University

Faculty of Physics, Department of General Physics and Wave Processes Moscow, Russia

N. Brandt

Lomonosov Moscow State University

Faculty of Physics, Department of General Physics and Wave Processes Moscow, Russia

Bibliografia

  1. Kuzuhara A. // Biopolymers. 2005. V. 79. No. 4. P. 173.
  2. Yang F.C., Zhang Y., Rheinstädter M.C. // PeerJ. 2014. V. 2. Art. No. e619.
  3. Robbins C.R. Chemical and Physical Behavior of Human Hair. Berlin, Heidelberg: Springer, 2012. P. 105.
  4. Rogers G.E. // Cosmetics. 2019. V. 6. No. 2. P. 32.
  5. Kuzuhara A. // J. Mol. Struct. 2013. V. 1047. P. 186.
  6. Chou K.C. // Biophys. Chem. 1986. V. 25. No. 2. P. 105.
  7. Bereins K., Fraser-Miller S.J., Gordon K.C. // Int. J. Pharm. 2020. V. 592. Art. No. 120034.
  8. Balakhnina I.A., Brandt N.N., Mankova A.A., Chikishev A.Y. // Vibrat. Spectrosc. 2021. V. 114. Art. No. 103250.
  9. Mankova A.A., Nagaeva A.I., Brandt N.N., Chikishev A.Y. // Vibrat. Spectrosc. 2023. V. 128. Art. No. 103564.
  10. Balakhnina I.A., Brandt N.N., Chikishev A.Y. et al. // J. Biomed. Opt. 2017. V. 22. No. 9. Art. No. 091509.
  11. Krimm S., Bandekar J. // Adv. Protein Chem. 1986. V. 38. P. 181.
  12. Lee S.H., Krimm S. // Biopolymers. 1998. V. 46. No. 5. P. 283.
  13. Shigeto S., Chang C.F., Hiramatsu H. // J. Phys. Chem. B. 2017. V. 121. No. 3. P. 490.
  14. Spiro T.G., Gaber B.P. // Annu. Rev. Biochem. 1977. V. 46. No. 1. P. 553.
  15. Kalanoor B.S., Ronen M., Oren Z. et al. // ACS Omega. 2017. V. 2. No. 3. P. 1232.
  16. Брандт Н.Н., Травкина Е.И. // Учен. зап. физ. фак-та Моск. ун-та. 2022. № 4. С. 2241103.
  17. Brandt N.N., Chikishev A.Y., Chulichkov A.I. et al. // Laser Phys. 2004. V. 14. No. 11. P. 1386.
  18. Savitzky A., Golay M.J.E. // Analyt. Chem. 1964. V. 36. No. 8. P. 1627.
  19. Nielsen O.F. // Annu. Rep. Prog. Chem. C. Phys. Chem. 1993. V. 90. P. 3.
  20. Брандт Н.Н., Травкина Е.И., Махальчик Е.В., Чилищев А.Ю. // Квант. электрон. 2022. Т. 52. № 1. С. 36; Brandt N.N., Travkina E.I., Mikhal’chik E.V., Chikishev A.Y., // Quantum Electron. 2022. V. 52. No. 1. P. 36.
  21. Di Foggia C., Boga, Micheletti G. et al. // Data Brief. 2021. V. 38. P. 107439.
  22. Paquin R., Colomban P. // J. Raman Spectrosc. 2007. V. 38. No. 5. P. 504.
  23. Brandt N.N., Chikishev A.Y., Mankova A.A., Sakodynskaya I.K. // J. Biomed. Opt. 2014. V. 20. No. 5. Art. No. 051015.
  24. Zhbankov R.G., Firsov S.P., Kolosova T.E. et al. // J. Mol. Struct. 2003. V. 656. No. 1-3. P. 275.
  25. Kuhar N., Sil S., Umapathy S. // Spectrochim Acta A. Mol. Biomol. Spectrosc. 2021. V. 258. Art. No. 119712.
  26. Eaves J.D., Feeko C.J., Stevens A.L. et al. // Chem. Phys. Lett. 2003. V. 376. No. 1-2. P. 20.
  27. Moore W.H., Krimm S. // Biopolymers. 1976. V. 15. No. 12. P. 2465.
  28. Fanconi B. // Biopolymers. 1973. V. 12. No. 12. P. 2759.
  29. Aliaga A.E., Aguayo T., Garrido C. et al. // Biopolymers. 2010. V. 95. No. 2. P. 135.
  30. Lord R.C., Yu N.T. // J. Mol. Biology. 1970. V. 51. No. 2. P. 203.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025