High Dynamic Range Retarding Potential Analyzer Operation Verification

封面

如何引用文章

全文:

详细

Probe diagnostics of ion energy distribution and ion current density in the plasma plume of electricpropulsion is considered. A detailed numerical and experimental comparison is presented of a new, highdynamic range retarding potential analyzer (HDR RPA) and a conventional gridded RPA probe applied to aplume of a hall effect thruster (HET) operating in different modes. Simulations show the disadvantages of thegridded retarding potential analyzer design and the advantages of the HDR RPA. By means of numericalmodeling, the peculiarities of using the HDR RPA are also investigated in detail and preliminary conclusionsregarding the probe accuracy are drawn. The final part of the paper shows the results of joint tests of the twoprobes at those plasma parameters where the gridded probe works most accurately, with a confirmed maximumerror of 5%.

全文:

受限制的访问

作者简介

D. Maystrenko

Keldysh Research Center; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438; Moscow, 141701

A. Shagayda

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

D. Tomilin

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

D. Kravchenko

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

M. Selivanov

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

参考

  1. Lev D., Myers R.M., Lemmer K.M., Kolbeck J., Koizumi H., Polzin K. // Acta Astronaut. 2019. V. 159. P. 213.
  2. Levchenko I., Xu S., Mazouffre S., Lev D., Pedrini D., Goebel D., Garrigues L., Taccogna F., Bazaka K. // Phys. Plasmas. 2020. V. 27. P. 020601.
  3. Gong S., Li J. // Sci. China Phys., Mechanics Astron. 2014. V. 57. P. 521531.
  4. Dale E., Jorns B., Gallimore A. // Aerospace. 2020. V. 7. P. 120.
  5. Gorshkov O.A., Shagayda A.A. // Tech. Phys. Lett. 2008. V. 34. P. 153.
  6. Trottenberg T., Bansemer F., Böttcher S., Feili D., Henkel H., Hesse M., Kersten H., Krüger T., Laube J., Lazurenko A., Sailer D., Schuster B., Seimetz L., Spethmann A., Weis S., Wimmer-Schweingruber R.F. // EPJ Techniques and Instrumentation. 2021. V. 8. P. 16.
  7. Hutchinson H. Principles of Plasma Diagnostics. Cambridge: Cambridge Univ. Press, 1987.
  8. Ya-li M., Fu-jun T., Yu-xiong X., Yi-feng C., Xin G., Yi W., Kai T., Ze-dong Y. // Int. J. Mech., Aerosp., Ind., Mechatron. Manuf. Eng. 2012. V. 6. P. 11.
  9. Heubel E.V. Enhancing Retarding Potential Analyzer Energy Measurements with Micro-Aligned Electrodes. Massachusetts Institute of Technology, 2021.
  10. Zhang Z., Tang H., Zhang Z., Wang J., Cao Sh. // Rev. Sci. Instrum. 2016. V. 87. P. 123510.
  11. Lemmer K.M., Gallimore A.D., Smith T.B., Austin D.R. // IEPC-2007-161, 30th Internat. Electric Propulsion Confer., 2007.
  12. Harmann H., Koch N., Kornfeld G. // IEPC-2007-119, Internat. Electric Propulsion Confer., 2007
  13. Hey F.G., Vaupel M., Groll C., Braxmaier C., Tajmar M., Sell A., Eckert K., Weise D., Saks N., Johann U. // IEPC-2017-271, 35th Internat. Electric Propulsion Confer., Atlanta, GA, 2017.
  14. Maystrenko D., Shagayda A., Kravchenko D., Lovtsov A. // Rev. Sci. Instrum. 2022. V. 93. P. 073504.
  15. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Jet Propulsion Laboratory California Institute of Technology, 2008.
  16. Shagayda A., Nikitin V., Tomilin D. // Vacuum. 2016. V. 123. P. 140.
  17. Goebel D. M., Becatti G. // Rev. Sci. Instrum. 2021. V. 92. P. 013511.
  18. Tomilin D., Lovtsov A. // Electric Propulsion Confer., University of Vienna, Vienna, Austria September 15–20, 2019. IEPC-2019-342.
  19. Walker M.L.R., Hofer R.R., Gallimore A.D. // J. Propulsion Power. 2016. V. 22. P. 205.
  20. Azziz Y., Martinez-Sanchez M. Experimental and Theoretical Characterization of a Hall Thruster Plume. Massachusetts Institute of Technology, 2007.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the aperture probe.

下载 (162KB)
3. Fig. 2. Schematic diagram of a three-grid probe.

下载 (74KB)
4. Fig. 3. Model of a three-grid probe.

下载 (104KB)
5. Fig. 4. Results of modeling the operation of a three-grid probe in a HD plasma with the most probable ion energy: 470 eV (a), 810 eV (b).

下载 (367KB)
6. Fig. 5. Illustration of the influence of space charge: ion trajectories (a); potential distribution in the probe under the influence of space charge and in the absence of space charge (b).

下载 (192KB)
7. Fig. 6. Illustration of incorrect operation of the probe in a jet with low current density: ion trajectories (a), potential distribution in grid cells (b) and (c).

下载 (237KB)
8. Fig. 7. Illustration of secondary electron emission in a three-grid probe.

下载 (58KB)
9. Fig. 8. Results of modeling the operation of an aperture probe.

下载 (238KB)
10. Fig. 9. Optimal focusing (a), too strong (b) and too weak focusing (c).

下载 (467KB)
11. Fig.10. Optimum accelerating potential depending on current density for different ion energies.

下载 (124KB)
12. Fig.11. Defocusing of reflected ions.

下载 (280KB)
13. Fig.12. Dependence of collector and electrode currents on the collector potential in the aperture probe.

下载 (108KB)
14. Fig.13. Dependence of collector current on accelerating potential.

下载 (111KB)
15. Fig.14. Dependence of collector current on accelerating potential.

下载 (111KB)
16. Fig.15. Energy spectrum obtained by an aperture probe at different accelerating potentials.

下载 (128KB)
17. Fig.16. Dependence of collector current on collector potential with measurement of negative currents.

下载 (103KB)
18. Fig.17. Experiment setup.

下载 (49KB)
19. Fig.18. Distribution of current density in the jet.

下载 (133KB)
20. Fig. 19. Energy spectra in the center of the jet at a discharge voltage of 300 V at angles of 0 and 15° to the engine axis.

下载 (192KB)
21. Fig. 20. Energy spectra in the center of the jet at a discharge voltage of 900 V at angles of 0 and 15° to the engine axis.

下载 (184KB)
22. Fig. 21. Measurements at a discharge voltage of 300 V, 45 and 60° to the axis.

下载 (218KB)
23. Fig. 22. Measured energy spectra at a discharge voltage of 900 V at angles of 45 and 60° to the axis.

下载 (220KB)
24. Fig. 23. Current dependences on the collector for multi-grid (bottom) and aperture probes (top).

下载 (186KB)
25. Fig. 24. Energy spectra at 80°.

下载 (184KB)
26. Fig. 25. Measured energy spectra at a discharge voltage of 300 V and a distance of 0.5 m to the engine.

下载 (168KB)

版权所有 © Russian Academy of Sciences, 2024