First Experiments on the Investigation of the Generation of Negative Hydrogen Ions with the Use of CW ECR Discharge at the GISMO Facility

Capa

Citar

Texto integral

Resumo

The results of the first experiments on studying the volume production of negative hydrogen ions using a dense gasdynamic plasma of an electron cyclotron resonance (ECR) discharge sustained by continuous wave (CW) microwave radiation from a gyrotron (28 GHz/5 kW) are described. The ECR hydrogen discharge is ignited in a vacuum chamber placed in a magnetic field created by a system of two consecutive magnetic traps. The system parameters are optimized to obtain the maximum average current density of negative ions at the level of j = 25 mA/cm2. The study involves the determination of the negative ion production area, me-asurement of the current density dependences on gas pressure and microwave radiation power, and demonstration of potential optimization opportunities for extraction voltage.

Sobre autores

R. Lapin

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

V. Skalyga

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

I. Izotov

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

S. Golubev

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

A. Bokhanov

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

E. Kiseleva

Institute of Applied Physics, Russian Academy of Sciences

Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

S. Vybin

Institute of Applied Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lapin@ipfran.ru
603950, Nizhny Novgorod, Russia

Bibliografia

  1. Bacal M., Sasao M., Wada M. // J. Appl. Phys. 2021. V. 129. P. 221101. https://doi.org/10.1063/5.0049289
  2. Браун Я. Физика и технология источников ионов. М.: Мир, 1998.
  3. Leung K.N., Ehlers K.W., Bacal M. // Rev. Sci. Instrum. 1983. V. 54. P. 56. https://doi.org/10.1063/1.1137215
  4. Lapin R.L., Skalyga V.A., Izotov I.V., Golubev S.V., Razin S.V., Bokhanov A.F., Kazakov M.Yu., Shaposhni-kov R.A., Kiseleva E.M., Tarvainen O. // J. Phys.: Conf. Ser. 2020. V. 1647. P. 012012. https://doi.org/10.1088/1742-6596/1647/1/012012
  5. Lapin R.L., Izotov I.V., Skalyga V.A., Razin S.V., Shaposhnikov R.A., Tarvainen O. // JINST. 2018. V. 13. P. C12007. https://doi.org/10.1088/1748-0221/13/12/C12007
  6. Dougar-Jabon V.D., Chacon Velasco A.J., Vivas F.A. // Rev. Sci. Instrum. 1998. V. 69. P. 950. https://doi.org/10.1063/1.1148618
  7. Dougar-Jabon V.D. // Phys. Scr. 2001. V. 63. № 4. P. 322. https://doi.org/10.1238/Physica.Regular.063a00322

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (293KB)
3.

Baixar (472KB)
4.

Baixar (78KB)
5.

Baixar (117KB)
6.

Baixar (67KB)
7.

Baixar (38KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023