Advanced Quasistatic Approximation

Cover Page

Cite item

Full Text

Abstract

The quasistatic approximation (QSA) is an efficient method of simulating laser- and beam-driven plasma wakefield acceleration, but it becomes imprecise if some plasma particles make long longitudinal excursions in a strongly nonlinear wave, or if waves with non-zero group velocity are present in the plasma, or the plasma density gradients are sharp, or the beam shape changes rapidly. We present an extension to QSA that is free from many of its limitations and retains its main advantages of speed and reduced dimensionality. The new approach takes into account the exchange of information between adjacent plasma layers. We introduce the physical model, describe its numerical implementation, and compare the simulation results with available analytical solutions and other codes.

About the authors

P. V. Tuev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

R. I. Spitsyn

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

K. V. Lotov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

References

  1. Albert F., Couprie M.E., Debus A., Downer M.C., Faure J., Flacco A., Gizzi L.A., Grismayer T., Huebl A., Joshi C., Labat M., Leemans W.P., Maier A.R., Mangles S.P.D., Mason P., Mathieu F., Muggli P., Nishiuchi M., Oster-hoff J., Rajeev P.P., Schramm U., Schreiber J., Tho-mas A.G.R., Vay J.-L., Vranic M., Zeil K. // New J. Phys. 2021. V. 23. P. 031101. https://doi.org/10.1088/1367-2630/abcc62
  2. Vay J.-L., Lehe R. // Rev. Accelerator Science Technology. 2016. V. 9. P. 165. https://doi.org/10.1142/S1793626816300085
  3. Lotov K.V. // Nuclear Instr. Methods A. 1998. V. 410. P. 461. https://doi.org/10.1016/S0168-9002(98)00178-8
  4. Burdakov A.V., Kudryavtsev A.M., Logatchov P.V., Lo-tov K.V., Petrenko A.V., Skrinsky A.N. // Plasma Phys. Rep. 2005. V. 31. P. 292. [Бурдаков А.В., Кудряв-цев А.М., Логачев П.В., Лотов К.В., Петренко А.В., Скринский А.Н. // Физика плазмы, 2005, Т. 31, C. 327–335.]https://doi.org/10.1134/1.1904145
  5. Schroeder C.B., Esarey E., Geddes C.G.R., Benedetti C., Leemans W.P. // Phys. Rev. ST Accel. Beams. 2010. V. 13. P. 101301. https://doi.org/10.1103/PhysRevSTAB.13.101301
  6. Nakajima K., Deng A., Zhang X., Shen B., Liu J., Li R., Xu Z., Ostermayr T., Petrovics S., Klier C., Iqbal K., Ruhl H., Tajima T. // Phys. Rev. ST Accel. Beams. 2011. V. 14. P. 091301. https://doi.org/10.1103/PhysRevSTAB.14.091301
  7. Schroeder C.B., Esarey E., Leemans W.P. // Phys. Rev. ST Accel. Beams, 2012. V. 15. P. 051301. https://doi.org/10.1103/PhysRevSTAB.15.051301
  8. Vay J.-L. // Phys. Rev. Lett. 2007. V. 98. P. 130405. https://doi.org/10.1103/PhysRevLett.98.130405
  9. Vay J.-L., Geddes C.G.R., Cormier-Michel E., Gro-te D.P. // J. Computational Phys. 2011. V. 230. P. 5908. https://doi.org/10.1016/j.jcp.2011.04.003
  10. Sprangle P., Esarey E., Ting A. // Phys. Rev. Lett. 1990. V. 64. P. 2011. https://doi.org/10.1103/PhysRevLett.64.2011
  11. Mora P., Antonsen T.M. // Phys. Plasmas. 1997. V. 4. P. 217. https://doi.org/10.1063/1.872134
  12. Jain N., Palastro J., Antonsen T.M., Mori W.B., An W. // Phys. Plasmas, 2015. V. 22. P. 023103. https://doi.org/10.1063/1.4907159
  13. Sosedkin A.P., Lotov K.V. // Nuclear Instr. Methods A. 2016. V. 829. P. 350. https://doi.org/10.1016/j.nima.2015.12.032
  14. An W., Decyk V.K., Mori W.B., Antonsen Jr. T.M. // J. Computational Phys. 2013. V. 250. P. 165. https://doi.org/10.1016/j.jcp.2013.05.020
  15. Mehrling T., Benedetti C., Schroeder C.B., Osterhoff J. // Plasma Phys. Control. Fusion, 2014. V. 56. P. 084012. https://doi.org/10.1088/0741-3335/56/8/084012
  16. Pukhov A., Farmer J.P. // Phys. Rev. Lett. 2018. V. 121. P. 264801. https://doi.org/10.1103/PhysRevLett.121.264801
  17. Zhu W., Palastro J.P., Antonsen T.M. // Phys. Plasmas, 2012. V. 19. P. 033105. https://doi.org/10.1063/1.3691837
  18. Huang C., Decyk V.K., Ren C., Zhou M., Lu W., Mo-ri W.B., Cooley J.H., Antonsen Jr.T.M., Katsouleas T. // J. Computational Phys. 2006. V. 217. P. 658. https://doi.org/10.1016/j.jcp.2006.01.039
  19. Спицын Р.И. Магистерская дисс. Новосибирский государственный университет, 2016. https://www.inp.nsk.su/~dep_plasma/dip/Spitsyn_m.pdf.
  20. Terzani D., Benedetti C., Schroeder C.B., Esarey E. // Phys. Plasmas. 2021. V. 28. P. 063105. https://doi.org/10.1063/5.0050580
  21. Sprangle P., Esarey E., Krall J., Joyce G., Phys. Rev. Lett., 1992. V. 69. P. 2200. https://doi.org/10.1103/PhysRevLett.69.2200
  22. Esarey E., Sprangle P., Krall J., Ting A., Joyce G. // Phys. Fluids B. 1993. V. 5. P. 2690. https://doi.org/10.1063/1.860707
  23. Lotov K.V. // Phys. Plasmas. 1998. V. 5. P. 785. https://doi.org/10.1063/1.872765
  24. Zgadzaj R., Silva T., Khudyakov V.K., Sosedkin A., Al-len J., Gessner S., Li Z., Litos M., Vieira J., Lotov K.V., Hogan M.J., Yakimenko V., Downer M.C. // Nature Comm. 2020. V. 11. P. 4753. https://doi.org/10.1038/s41467-020-18490-w
  25. Khudiakov V.K., Lotov K.V., Downer M.C. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 045003. https://doi.org/10.1088/1361-6587/ac4523
  26. Benedetti C., Schroeder C.B., Geddes C.G.R., Esarey E., Leemans W.P. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 014002. https://doi.org/10.1088/1361-6587/aa8977
  27. Zhu W., Palastro J.P., Antonsen T.M. // Phys. Plasmas. 2013. V. 20. P. 073103. https://doi.org/10.1063/1.4813245
  28. Lotov K.V. // Phys. Rev. ST Accel. Beams. 2003. V. 6. P. 061301. https://doi.org/10.1103/PhysRevSTAB.6.061301
  29. https://lcode.info/.
  30. See the LCODE manual at https://lcode.info/site-files/manual.pdf.
  31. Crank J., Nicolson P. // Mathematical Proceed. Cambridge Philosophical Soc. 1947. V. 43. P. 50. https://doi.org/10.1017/S0305004100023197
  32. Peaceman D.W., Rachford H.H. // J. Soc. Industrial Applied Math. 1955. V. 3. P. 28. https://doi.org/10.1137/0103003
  33. Douglas J. // J. Soc. Industrial Applied Math. 1955. V. 3. P. 42. https://doi.org/10.1137/0103004
  34. Esarey E., Leemans W.P. // Phys. Rev. E. 1999. V. 59. P. 1082. https://doi.org/10.1103/PhysRevE.59.1082
  35. Lehe R., Kirchen M., Andriyash I.A., Godfrey B.B., Vay J.-L. // Computer Phys. Communications. 2016. V. 203. P. 66. https://doi.org/10.1016/j.cpc.2016.02.007
  36. Luo J., Chen M., Zhang G.-B., Yuan T., Yu J.-Y., Shen Z.-C., Yu L.-L., Weng S.-M., Schroeder C. B., Esa-rey E. // Phys. Plasmas. 2016. V. 23. P. 103112. https://doi.org/10.1063/1.4966047
  37. Massimo F., Beck A., Derouillat J., Grech M., Lobet M., Perez F., Zemzemi I., Specka A. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 124001. https://doi.org/10.1088/1361-6587/ab49cf
  38. Terzani D., Londrillo P. // Computer Phys. Communicat. 2019. V. 242. P. 49. https://doi.org/10.1016/j.cpc.2019.04.007
  39. Pukhov A., Meyer-ter-Vehn J. // Appl. Phys. B, 2002. V. 74. P. 355. https://doi.org/10.1007/s003400200795
  40. Malka V. // Phys. Plasmas, 2012. V. 19. P. 055501. https://doi.org/10.1063/1.3695389
  41. Esarey E., Schroeder C.B., Leemans W.P. // Rev. Mod. Phys. 2009. V. 81. P. 1229. https://doi.org/10.1103/RevModPhys.81.1229
  42. Morshed S., Antonsen T.M., Palastro J.P. // Phys. Plasmas, 2010. V. 17. P. 063106. https://doi.org/10.1063/1.3432685
  43. Tuev P.V., Lotov K.V. Proc. 47th EPS Conference on Plasma Phys. 2021. P. 2.2004. http://ocs.ciemat.es/EPS2021PAP/pdf/P2.2004.pdf.
  44. Irkutsk Supercomputer Center of SB RAS (available at: http://ocs.ciemat.es/EPS2021PAP/pdf/P2.2004.pdf).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (52KB)
4.

Download (68KB)
5.

Download (261KB)
6.

Download (28KB)
7.

Download (25KB)
8.

Download (208KB)
9.

Download (487KB)

Copyright (c) 2023 Russian Academy of Sciences