Sex pheromone and ultraviolet radiation: interaction of attraction effects for cotton earworm, Helicoverpa armigera (Hbn.) (Lepidoptera, Noctuidae) adults

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Although the potential of the use of the semiochemicals (pheromones, allomones, kairomones, and synomones) and the semiophysicals (physical stimuli) to control insect behaviour for plant protection from harmful insects is beyond doubt, the characteristics of the interactions between their attractive properties have been extremely poorly studied. Therefore, despite the fact that the cotton bollworm, Helicoverpa armigera, is one of the most harmful insects on the planet, there is no information in the literature on the effect of a combination of light stimuli and a synthetic sex attractant (SSA) on the behaviour of this species. In July–August 2021–2023, we conducted a study in two locations in Krasnodar Territory of Russia to test attraction of cotton bollworm adults with traps placed on corn sowings and equipped with four baits: (1) ultraviolet light emitting diodes (UV LEDs), (2) SSA, (3) SSA + UV LEDs, and control (4). The results obtained showed significant differences between the baits in capturing moths: not a single adult was captured in the control trap at all; traps with UV LEDs captured about 8%; with SSA, capturing a little more than 30%, and traps that attracted insects with both SPA and UV LEDs captured almost 60% of the total number of moths captured. The small catch of moths to the light is clearly explained by the situation of the traps in rows of tall hybrid corn at a height of 1.5 metres above the ground and no closer than 30 metеrs to the edge of the field. This means that the light, unlike SSA signals, was faded rapidly by the surrounding vegetation. However, a positive aspect of the technique used is the absence of significant numbers of non-target insect species capture in traps. The only exceptions are green grasshoppers, Tettigonia caudata (Ch.) and T. viridissima (L.), in traps with LEDs or other baits. Using two-factor ANOVA of both the original and transformed (x + 0.5)½ capture data, we found a synergy effect in the interaction of SSA and LED signals with respect to attractiveness for pest adults at pa = 0.05 only in one out of the five tests conducted. This result shows that the interaction of the semiochemicals and semiophysicals has rather additive than synergistic nature. Nevertheless, the results of the tests suggest that the combined use of SSA and LED may be a promising means for controlling the behaviour of the pest since retrofitting pheromone traps with UV LEDs can result in an approximately twofold increase in catch rates of the cotton bollworm adults.

Full Text

Restricted Access

About the authors

А. N. Frolov

Всероссийский научно-исследовательский институт защиты растений

Author for correspondence.
Email: afrolov@vizr.spb.ru
Russian Federation, 196608, Санкт-Петербург, шоссе Подбельского, 3

А. G. Kononchuk

Всероссийский научно-исследовательский институт защиты растений

Email: kononchuk26@yandex.ru
Russian Federation, 196608, Санкт-Петербург, шоссе Подбельского, 3

I. V. Grushevaya

Всероссийский научно-исследовательский институт защиты растений

Email: grushevaya_12@mail.ru
Russian Federation, 196608, Санкт-Петербург, шоссе Подбельского, 3

А. А. Miltsen

Всероссийский научно-исследовательский институт защиты растений

Email: miltsen@yandex.ru
Russian Federation, 196608, Санкт-Петербург, шоссе Подбельского, 3

S. D. Karakotov

АО «Щелково Агрохим»

Email: ksd@betaren.ru
Russian Federation, 141108, Московская обл., Щелково, ул. Заводская, 2

S. V. Stulov

АО «Щелково Агрохим»

Email: stulov.s@betaren.ru
Russian Federation, 141108, Московская обл., Щелково, ул. Заводская, 2

N. V. Vendilo

АО «Щелково Агрохим»

Email: nvvendilo@inbox.ru
Russian Federation, 141108, Московская обл., Щелково, ул. Заводская, 2

References

  1. Алфераки С. Н. 1907 [1908]. К фауне чешуекрылых Северного Кавказа (исправления и добавления). Русское энтомологическое обозрение 7 (4): 203–205.
  2. Гелетюк О., Настас Т. 2022. Оценка сезонной аттрактивности феромонных ловушек в сравнении со световыми для имаго Heliothis armigera Hbn. В кн.: С. Ю. Блохина, Н. П. Бучкина, Т. А. Гурова (ред.). Материалы международной научной конференции «Агрофизический институт: 90 лет на службе земледелия и растениеводства». ФГБНУ АФИ, Санкт-Петербург, 14–15 апреля 2022 г. СПб.: АФИ, с. 475–477.
  3. Говоров Д. Н., Живых А. В., Проскурякова М. Ю. 2013. Хлопковая совка – периодическая угроза сельскохозяйственным посевам. Защита и карантин растений 5: 18–20.
  4. Горностаев Г. Н. 1984. Введение в этологию насекомых-фотоксенов (лёт насекомых на искусственные источники света). В кн.: В. И. Тобиас (ред.). Этология насекомых. Л.: Наука, с. 101–167 (Труды Всесоюзного энтомологического общества, т. 66).
  5. Горышин Н. И. 1958. Экологический анализ сезонного цикла развития хлопковой совки (Chloridea obsoleta F.) в северных районах ее распространения. Ученые записки Ленинградского государственного университета 240: 3–20.
  6. Гричанов И. Я., Овсянникова Е. И. 2005. Феромоны для фитосанитарного мониторинга вредных чешуекрылых насекомых. Приложения к журналу Вестник защиты растений. Серия 5. СПб.–Пушкин: Всероссийский научно-исследовательский институт защиты растений РАСХН, 244 с.
  7. Исмаилов В. Я., Команцев А. А., Богатырев О. Д. 2023. Контроль численности хлопковой совки на подсолнечнике с помощью феромонов. Вестник Ульяновской государственной сельскохозяйственной академии 1 (61): 54–59. https://doi.org/10.18286/1816-4501-2023-1-54-59
  8. Касьяненко Т. Г. 2017. Системный взгляд на синергию: определение, типология и источники синергического эффекта. Российское предпринимательство 18 (24): 4035–4050. 10.18334/rp.18.24.38580' target='_blank'>https://doi.org/doi: 10.18334/rp.18.24.38580
  9. Коробка А. Н., Орленко С. Ю., Алексеенко Е. В., Малышева Н. Н., Сорочинская Е. М., Трубилин А. И., Нещадим Н. Н., Малюга Н. Г., Василько В. П., Кравцов А. М., Пикушова Э. А., Найденов А. С., Зазимко М. И., Ефремова В. В., Бардак Н. И., Сисо А. В., Веретельник Е. Ю., Лукомец В. М., Бочкарев Н. И., Тишков Н. М., Гаркуша С. В., Ковалев В. С., Харитонов Е. М., Науменко В. П., Надыкта В. Д., Исмаилов В. Я., Волкова Г. В., Агасьева И. С., Данилов Р. В., Костюков В. В., Монастырский О. А., Савва А. П., Пушня М. В., Садковский В. Т., Соколов Ю. Г., Шумилов Ю. В. 2015. Система земледелия Краснодарского края на агроландшафтной основе. Краснодар: «Просвещение-Юг», 352 с.
  10. Матов А. Ю., Кононенко В. С. 2012. Трофические связи гусениц совкообразных чешуекрылых фауны России (Lepidoptera, Noctuoidea: Nolidae, Erebidae, Euteliidae, Noctuidae). Владивосток: Дальнаука, 346 с.
  11. Мисриева Б. У. 2012. Феромонный мониторинг и численность преимагинальных фаз хлопковой совки в климатических условиях Южного Дагестана. Проблемы развития АПК региона 3: 45–49.
  12. Павлюшин В. А. 2010. Научное обеспечение защиты растений и продовольственная безопасность России. Защита и карантин растений 2: 11–15.
  13. Перечень особо опасных для продукции растительного происхождения вредных организмов. 2010. Вестник защиты растений 4: 74–75.
  14. Саранцева Н. А., Рябчинская Т. А., Харченко Г. Л., Бобрешова И. Ю. 2014. Оптимизация феромониторинга хлопковой совки на посевах кукурузы в ЦЧР. Защита и карантин растений 3: 27–29.
  15. Синергия [Интернет-документ]. 2023. [URL: https://ru.wikipedia.org/wiki/Синергия].
  16. Фефелова Ю. А., Фролов А. Н. 2007. Факторы сезонной динамики численности хлопковой совки Helicoverpa armigera в Краснодарском крае. Вестник защиты растений 1: 47–52.
  17. Фролов А. Н., Грушевая И. В., Конончук А. Г. 2021. Современные типы ловушек для мониторинга чешуекрылых на примере кукурузного мотылька. Монография. СПб.: «Наукоемкие технологии», 120 с.
  18. Фролов А. Н., Мильцын А. А., Захарова Ю. А., Грушевая И. В., Конончук А. Г., Токарев Ю. С. 2020. Светоферомонная ловушка для летающих насекомых. Патент на полезную модель № RU 201632 U1, 24.12.2020. Заявка № 2020127904 от 21.08.2020.
  19. Ченикалова Е. В., Коломыцева В. А. 2021. Хлопковая совка продвигается на север. Проблемы прогноза численности. Защита и карантин растений 2: 31–33.
  20. Шеффе Г. 1980. Дисперсионный анализ. Перевод с англ., издание второе. М.: Наука, 512 с.
  21. Юрченко Е. Г., Орлов О. В. 2019. Мониторинг хлопковой совки на виноградниках. В кн.: Ю. Н. Баранчиков (ред.). Мониторинг и биологические методы контроля вредителей и патогенов древесных растений: от теории к практике. Материалы Второй Всероссийской конференции с международным участием, Москва, 22–26 апреля 2019 г. Красноярск: Институт леса им. В. Н. Сукачева СО РАН, с. 195–196.
  22. Afonin A. N., Greene S. L., Dzyubenko N. I., Frolov A. N. (eds). 2008. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and Their Diseases, Pests and Weeds. [URL: http://www.agroatlas.ru].
  23. Amandeep K., Vijay K., Dhawan A. K. 2016. Population monitoring of cotton bollworm moth with sex pheromones in Punjab, India. International Journal of Agricultural Science and Research 6 (3): 235–240.
  24. Baker G., Tann C., Fitt G. 2011. A tale of two trapping methods: Helicoverpa spp. (Lepidoptera, Noctuidae) in pheromone and light traps in Australian cotton production systems. Bulletin of Entomological Research 101 (1): 9–23. https://doi.org/10.1017/S0007485310000106
  25. Bakthavatsalam N., Vinutha J., Ramakrishna P., Raghavendra A., Ravindra K., Verghese A. 2016. Autodetection in Helicoverpa armigera (Hubner). Current Science 110 (12): 2261–2267. https://www.jstor.org/stable/24908470
  26. Berenbaum M. C. 1977. Synergy, additivism and antagonism in immunosuppression: a critical review. Clinical and Experimental Immunology 28 (1): 1–18.
  27. Bliss C. I. 1939. The toxicity of poisons applied jointly. Annals of Applied Biology 26 (3): 585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
  28. Caesar L. K., Cech N. B. 2019. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Natural Product Reports 36 (6): 869–888. https://doi.org/10.1039/C9NP00011A
  29. Cunningham J. P., Zalucki M. P. 2014. Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? Journal of Economic Entomology 107 (3): 881–896. https://doi.org/10.1603/EC14036
  30. Dent D. R., Pawar C. S. 1988.The influence of moonlight and weather on catches of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in light and pheromone traps. Bulletin of Entomological Research 78 (3): 365–377. https://doi.org/10.1017/S0007485300013146
  31. Dhaliwal G. S., Jindal V., Dhawan A. K. 2010. Insect pest problems and crop losses: changing trends. Indian Journal of Ecology 37 (1): 1–7.
  32. Dömötör I., Kiss J., Szőcs G. 2007. First results on synchrony between seasonal pattern of pheromone trap captures of cotton bollworm, Helicoverpa armigera, and appearance of freshly emerged larvae on developing cobs of corn hybrids. Journal of Pest Science 80 (3): 183–189. https://doi.org/10.1007/s10340-007-0164-y
  33. Duehl A. J., Cohnstaedt L. W., Arbogast R. T., Teal P. E. A. 2011. Evaluating light attraction to increase trap efficiency for Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Economic Entomology 104 (4): 1430–1435. https://doi.org/10.1603/EC10458
  34. Epsky N. D., Morrill W. L., Mankin R. W. 2008. Traps for capturing insects. In: J. L. Capinera (ed.). Encyclopedia of Entomology, 2nd Edition. Berlin, Heidelberg: Springer Science & Business Media, p. 3887–3901.
  35. Farrow R. A., Daly J. C. 1987. Long-range movements as an adaptive strategy in the genus Heliothis (Lepidoptera: Noctuidae) – a review of its occurrence and detection in four pest species. Australian Journal of Zoology 35 (1): 1–24. https://doi.org/10.1071/ZO9870001
  36. Feng H. Q., Wu K. M., Cheng D. F., Guo Y. Y. 2004. Northward migration of Helicoverpa armigera (Lepidoptera: Noctuidae) and other moths in early summer observed with radar in northern China. Journal of Economic Entomology 97 (6): 1874–1883. https://doi.org/10.1093/jee/97.6.1874
  37. Feng H. Q., Wu K. M., Ni Y. X., Cheng D. F., Guo Y. Y. 2005. High-altitude windborne transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in mid-summer in northern China. Journal of Insect Behavior 18: 335–249. https://doi.org/10.1007/s10905-005-3694-2
  38. Feng H. Q., Wu X. F., Wu B., Wu K. M. 2009. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. Journal of Economic Entomology 102 (1): 95–104. https://doi.org/10.1603/029.102.0114
  39. Fite T., Damte T., Tefera T., Negeri M. 2020. Evaluation of commercial trap types and lures on the population dynamics of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) and its effects on non-targets insects. Cogent Food & Agriculture 6 (1): 1771116. https://doi.org/10.1080/23311932.2020.1771116
  40. Fitt G. P. 1989. The ecology of Heliothis species in relation to agroecosystems. Annual Review of Entomology 34: 17–53. https://doi.org/10.1146/annurev.en.34.010189.000313
  41. Fitt G. P., Cotter S. C. 2005. The Helicoverpa problem in Australia: biology and management. In: H. Sharma (ed.). Heliothis/Helicoverpa Management: Emerging Trends and Prospects for Future Research. New Delhi: Oxford & IBH Publishing Co, p. 57–74.
  42. Frolov A. N. 2022. Controlling the behavior of harmful insects: light and chemical signals and their combined action. Entomological Review 102 (6): 782–819. https://doi.org/10.1134/S0013873822060033
  43. Frolov A. N., Grushevaya I. V., Kononchuk A. G. 2020. LEDS and semiochemicals vs. sex pheromones: tests of the European corn borer attractivity in the Krasnodar Territory. Plant Protection News 103 (4): 270–274. https://doi.org/10.31993/2308-6459-2020-103-4-13989
  44. Gao K., Torres‐Vila L. M., Zalucki M. P., Li Y., Griepink F., Heckel D. G., Groot A. T. 2020. Geographic variation in sexual communication in the cotton bollworm, Helicoverpa armigera. Pest Management Science 76 (11): 3596–3605. https://doi.org/10.1002/ps.5893
  45. Gentry C. R., Davis D. R. 1973. Weather: influence on catches of adult cabbage loopers in traps baited with BL only or with BL plus synthetic sex pheromone. Environmental Entomology 2 (6): 1074–1077. https://doi.org/10.1093/ee/2.6.1074
  46. Gomes E. S., Santos V., Ávila C. J. 2017. Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomological Science 20 (1): 419–426. http://doi.org/10.1111/ens.12267
  47. Greco W. R., Bravo G., Parsons J. C. 1995. The search for synergy: a critical review from a response surface perspective. Pharmacological Reviews 47: 331–385.
  48. Gregg P. C., Fitt G. P., Zalucki M. P., Murray D. A. H. 1995. Insect migration in an arid continent. II. Helicoverpa spp. in eastern Australia. In: V. A. Drake, A. G. Gatehouse (eds). Insect Migration: Tracking Resources Through Space and Time. Cambridge, UK: Cambridge University Press. p. 151–172.
  49. Gross J., Franco J. C. 2022. Novel trends on semiochemicals and semiophysicals for insect science and management. Entomologia Generalis 42 (2): 163–165. https://doi.org/10.1127/entomologia/2022/1535
  50. Guerrero S., Brambila J., Meagher R. L. 2014. Efficacies of four pheromone-baited traps in capturing male Helicoverpa (Lepidoptera: Noctuidae) moths in northern Florida. Florida Entomologist 97 (4):1671–1678. https://doi.org/10.1653/024.097.0441
  51. Haile F., Nowatzki T., Storer N. 2021. Overview of pest status, potential risk, and management considerations of Helicoverpa armigera (Lepidoptera: Noctuidae) for U. S. soybean production. Journal of Integrated Pest Management 12 (1): 3. https://doi.org/10.1093/jipm/pmaa030
  52. Hardwick D. F. 1965. The corn earworm complex. The Memoirs of the Entomological Society of Canada 97 (S40): 5–247. https://doi.org/10.4039/entm9740fv
  53. Hathaway D. O. 1981. Codling Moth: Field Evaluation of Blacklight and Sex Attractant Traps. Agricultural Research Service, U. S. Department of Agriculture. Advances in Agricultural Technology, Western Series, No 19, 4 p.
  54. Helicoverpa armigera (cotton bollworm) [Интернет-документ]. 2021. CABI Compendium, 16 November 2021. [URL: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.26757] https://doi.org/10.1079/cabicompendium.26757
  55. He W., Zhao X., Ali A., Ge S., Zhang H., He L., Wu K. 2021. Population dynamics and reproductive developmental analysis of Helicoverpa armigera (Lepidoptera: Noctuidae) trapped using food attractants in the field. Journal of Economic Entomology 114 (4): 1533–1541. https://doi.org/10.1093/jee/toab113
  56. Hou M., Sheng C. 1999. Fecundity and longevity of Helicoverpa armigera (Lepidoptera: Noctuidae): effects of multiple mating. Journal of Economic Entomology 92 (3): 569–573. https://doi.org/10.1093/jee/92.3.569
  57. Jallow M. F. A., Matsumura M., Suzuki Y. 2001. Oviposition preference and reproductive performance of Japanese Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Applied Entomology and Zoology 36 (4): 419–426. https://doi.org/10.1303/aez.2001.419
  58. Jones C. M., Parry H., Tay W. T., Reynolds D. R., Chapman J. W. 2019. Movement ecology of pest. Annual Review of Entomology 64: 277–295. https://doi.org/10.1146/annurev-ento-011118-111959
  59. Jyothi P., Aralimarad P., Wali V., Dave S., Bheemanna M., Ashoka J., Shivayogiyappa P., Lim K. S., Chapman J. W., Sane S. P. 2021. Evidence for facultative migratory flight behavior in Helicoverpa armigera (Noctuidae: Lepidoptera) in India. PLoS One 16 (1): e0245665. https://doi.org/10.1371/journal.pone.0245665
  60. Kant K., Kanaujia K. R., Kanaujia S. 1999. Rhythmicity and orientation of Helicoverpa armigera (Hubner) to pheromone and influence of trap design and distance on moth trapping. Journal of Insect Science 12: 6–8.
  61. Karakantza E., Rumbos C. I., Cavalaris C., Athanassiou C. G. 2023. Different trap types depict dissimilar spatio-temporal distribution of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in cotton fields. Agronomy 13 (5): 1256. https://doi.org/10.3390/agronomy13051256
  62. Karakasis A., Lampiri E., Rumbos C. I., Athanassiou C. G. 2021. Factors affecting adult captures of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in pheromone-baited traps. Agronomy 11 (12): 2539.
  63. Kehat M., Gothilf S., Dunkelblum E., Greenberg S. 1980. Field evaluation of female sex pheromone components of the cotton bollworm, Heliothis armigera. Entomologia Experimentalis et Applicata 27 (2): 188–193. https://doi.org/10.1111/j.1570-7458.1980.tb02963.x
  64. Keszthelyi S., Nowinszky L., Szeőke K. 2016. Different catching series from light and pheromone trapping of Helicoverpa armigera (Lepidoptera: Noctuidae). Biologia 71: 818–823. https://doi.org/10.1515/biolog-2016-0094
  65. Keszthelyi S., Puskás J., Nowinszky L. 2019. Light-trap catch of cotton bollworm, Helicoverpa armigera in connection with the moon phases and geomagnetic H-index. Biologia 74: 661–666. https://doi.org/10.2478/s11756-019-00197-z
  66. Kiran T., R. Mamtha, Saraswathi, Chaitra B. S., Doddamane M. 2019. War against old-world bollworm, Helicoverpa armigera (Hubner): past, present, and future. Progressive Agriculture 19 (2): 186–198. https://doi.org/10.5958/0976-4615.2019.00037.1
  67. Klun J. A., Plimmer J. R., Bierl-Leonhardt B. A., Sparks A. N., Chapman O. L. 1979. Trace chemicals: the essence of sexual communication systems in Heliothis species. Science 204 (4399): 1328–1330. https://doi.org/10.1126/science.204.4399.1328
  68. Knight A. L., Preti M., Basoalto E., Fuentes-Contreras E. 2023. Increasing catches of adult moth pests (Lepidoptera: Tortricidae) in pome fruit with low-intensity LED lights added to sex pheromone/kairomone lure-baited traps. Journal of Applied Entomology 147: 843–856. https://doi.org/10.1111/jen.13176
  69. Kriticos D. J., Ota N., Hutchison W. D., Beddow J., Walsh T., Tay W. T., Borchert D. M., Paula-Moraes S. V., Czepak C., Zalucki M. P. 2015. The potential distribution of invading Helicoverpa armigera in North America: is it just a matter of time? PLoS One 10 (3): e0119618. https://doi.org/10.1371/journal.pone.0119618 PMID: 25786260
  70. Kuno E. 1991. Sampling and analysis of insect populations. Annual Review of Entomology 36: 285–304. https://doi.org/10.1146/annurev.en.36.010191.001441
  71. Lammers J. W., MacLeod A. [Интернет-документ]. 2007. Report of a pest risk analysis: Helicoverpa armigera (Hübner, 1808). Plant Protection Service (NL) and Central Science Laboratory (UK), 18 p. [URL: https://secure.fera.defra.gov.uk/phiw/riskRegister/downloadExternalPra.cfm?id=3879]
  72. Latash M. L. (ed.). 2008. Synergy. Oxford, NY: Oxford University Press, 412 p. http://doi.org/10.1093/acprof:oso/9780195333169.001.0001
  73. Loewe S. 1953. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3 (6): 285–290.
  74. Loganathan M., Uthamasamy S. 1998. Efficacy of a sex pheromone formulation for monitoring Heliothis arrmigera Hubner moths on cotton. Journal of Entomological Research 22 (1): 35–38.
  75. Loganathan M., Sasikumar M., Uthamasamy S. 1999. Assessment of duration of pheromone dispersion for monitoring Heliothis armigera (Hüb.) on cotton. Journal of Entomological Research 23 (1): 61–64.
  76. Maelzer D. A., Zalucki M. P. 1999. Analysis of long-term light-trap data for Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia: the effect of climate and crop host plants. Bulletin of Entomological Research 89 (5): 455–463. https://doi.org/10.1017/S0007485399000590
  77. McQuate G. T. 2014. Green light synergistally enhances male sweetpotato weevil response to sex pheromone. Scientific Reports 4: 4499. https://doi.org/10.1038/srep04499
  78. Matthews M. 1991. Classification of the Heliothinae. Natural Resources Institute (Chatham, UK) Bulletin No 44, 198 p. [URL: http://gala.gre.ac.uk/11076]
  79. Mazzoni V., Anfora G. 2021. Behavioral manipulation for pest control. Insects 12 (4): 287. https://doi.org/10.3390/insects12040287
  80. Mironidis G. K., Savopoulou-Soultani M. 2014. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environmental Entomology 37 (1): 16–28. https://doi.org/10.1093/ee/37.1.16
  81. Miyatake T., Yokoi T., Fuchikawa T., Korehisa N., Kamura T., Nanba K., Ryouji S., Kamioka N., Hironaka M., Osada M., Hariyama T., Sasaki R., Shinoda K. 2016. Monitoring and detecting the cigarette beetle (Coleoptera: Anobiidae) using ultraviolet (LED) direct and reflected lights and/or pheromone traps in a laboratory and a storehouse. Journal of Economic Entomology 109 (6): 2551–2560. https://doi.org/10.1093/jee/tow225
  82. Nemerenco O., Nastas T. 2023. The pest monitoring of Heliothis armigera Hbn. through the use of light traps. In: M. Duca, S. Clapco, A. Port, M. Severin (eds). Abstract Book National Conference with International Participation “Natural Sciences in the Dialogue of Generations”, September 14–15, 2023, Chisinau, Republic of Moldova. Chisinau: Moldova State University, p. 56.
  83. Nibouche S. 1999. Helicoverpa (= Heliothis) armigera (Hübner, 1808) (Lepidoptera, Noctuidae, Heliothinae). Série “Les déprédateurs du cotonnier en Afrique tropicale et dans le reste du monde”, No. 12, Cirad-CA, France, 51 p.
  84. Nieri R., Anfora G., Mazzoni V., Stacconi M. М. R. 2022. Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomologia Generalis 42 (2): 167–183. https://doi.org/10.1127/entomologia/2021/1236
  85. Noor-ul-Ane M., Kim D. S., Zalucki M. P. 2018. Fecundity and egg laying in Helicoverpa armigera (Lepidoptera: Noctuidae): model development and field validation. Journal of Economic Entomology 111 (5): 2208–2216. https://doi.org/10.1093/jee/toy271
  86. Nowinszky L., Puskás J. 2011. Light trapping of Helicoverpa armigera in India and Hungary in relation with the moon phases. Indian Journal of Agricultural Sciences 81 (2): 154–157.
  87. Nyambo B. T. 1988. A comparative assessment of pheromone and light traps as tools for monitoring Heliothis armigera in Tanzania. Tropical Pest Management 34 (4): 448–454. https://doi.org/10.1080/09670878809371300
  88. Nyambo B. T. 1989. Assessment of pheromone traps for monitoring and early warning of Heliothis armigera Hübner (Lepidoptera, Noctuidae) in the western cotton-growing areas of Tanzania. Crop Protection 8 (3): 188–192. https://doi.org/10.1016/0261-2194(89)90025-2
  89. Otieno J. A., Stukenberg N., Weller J., Poehling H. M. 2018. Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science 91 (4): 1301–1314. https://doi.org/10.1007/s10340-018-1005-x
  90. Pal S., Chatterjee H., Senapati S. K. 2014. Monitoring of Helicoverpa armigera using pheromone traps and relationship of moth activity with larval infestation on carnation (Dianthus caryophyllus) in Darjeeling Hills. Journal of Entomological Research 38 (1): 23–26.
  91. Pan H., Xu Y., Liang G., Wyckhuys K. A., Yang Y., Lu Y. 2020. Field evaluation of light-emitting diodes to trap the cotton bollworm, Helicoverpa armigera. Crop Protection 137: 105267. https://doi.org/10.1016/j.cropro.2020.105267
  92. Pathania S. S., Verma A. K., Gupta P. R. 2009. Pheromone monitoring of Helicoverpa armigera (Hubner) and relationship with abiotic factors and infestation on tomato. Indian Journal of Entomology 71 (4): 312–316.
  93. Pawar C., Sithanantham S., Bhatnagar V., Srivastava C., Reed W. 1988. The development of sex pheromone trapping of Heliothis armigera at ICRISAT, India. Tropical Pest Management 34 (1): 39–43. https://doi.org/10.1080/09670878809371203
  94. Payton M. E., Richter S. J., Giles K. L., Royer T. A. 2006. Transformations of count data for tests of interaction in factorial and split-plot experiments. Journal of Economic Entomology 99 (3):1002–1006. https://doi.org/10.1093/jee/99.3.1002
  95. Pedgley D. E. 1985. Windborne migration of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) to the British Isles. Entomologist’s Gazette 36 (1): 15–20.
  96. Pedgley D. E., Tucker M. R., Pawar C. S. 1987. Windborne migration of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in India. International Journal of Tropical Insect Science 8 (4–6): 599–604. https://doi.org/10.1017/S1742758400022669
  97. Pezhman H., Saeidi K. 2018. Effectiveness of various solar light traps with and without sex pheromone for mass trapping of tomato leaf miner (Tuta absoluta) in a tomato field. Notulae Scientia Biologicae 10 (4): 475–484. https://doi.org/10.15835/nsb10410303
  98. Rajapakse C. N. K., Walter G. H. 2007. Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arthropod-Plant Interactions 1: 17–26. https://doi.org/10.1007/s11829-007-9003-6
  99. Rawat R. K., Keval R., Chakravarty S., Ganguly S. 2017. Monitoring of gram pod borer, Helicoverpa armigera (Hübner) through pheromone traps on long duration pigeonpea [Cajanus cajan (L.) Millsp.]. Journal of Entomology and Zoology Studies 5 (5): 665–669.
  100. Reddy S. E., Rana S., Rana A., Kumar R. 2021. Seasonal incidence and monitoring of Helicoverpa armigera Hübner on damask rose (Rosa ×damascena Herrm.) by sex pheromone traps in western Himalaya (India). Journal of Applied Research on Medicinal and Aromatic Plants 20: 100270. https://doi.org/10.1016/j.jarmap.2020.100270
  101. Reeve J. D., Strom B. L. 2004. Statistical problems encountered in trapping studies of scolytids and associated insects. Journal of Chemical Ecology 30: 1575–1590. https://doi.org/10.1023/B:JOEC.0000042069.17533.3c
  102. Riaz S., Johnson J. B., Ahmad M., Fitt G. P., Naiker M. 2021. A review on biological interactions and management of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Applied Entomology 145 (6): 467–498. https://doi.org/10.1111/jen.12880
  103. Rice K. B., Cullum J. P., Wiman N. G., Hilton R., Leskey T. C. 2017. Halyomorpha halys (Hemiptera: Pentatomidae) response to pyramid traps baited with attractive light and pheromonal stimuli. Florida Entomologist 100 (2): 449–453. https://doi.org/10.1653/024.100.0207
  104. Riley J. R., Armes N. J., Reynolds D. R., Smith A. D. 1992. Nocturnal observations on the emergence and flight behaviour of Helicoverpa armigera (Lepidoptera: Noctuidae) in the post-rainy season in central India. Bulletin of Entomological Research 82 (2): 243–256. https://doi.org/10.1017/S0007485300051798
  105. Ritchie S. W., Hanway J. J., Benson G. O., Herman J. C. 1993. How a Corn Plant Develops. Ames: Iowa State University of Science and Technology Cooperative Extension Service, Special Report 48, 21 p.
  106. Roell K. R., Reif D. M., Motsinger-Reif A. A. 2017. An introduction to terminology and methodology of chemical synergy – perspectives from across disciplines. Frontiers in Pharmacology 8: 158. https://doi.org/10.3389/fphar.2017.00158
  107. Roelofs W. L., Cardé R. T. 1977. Responses of Lepidoptera to synthetic sex pheromone chemicals and their analogues. Annual Review of Entomology 22: 377–405. https://doi.org/10.1146/annurev.en.22.010177.002113
  108. Sambaraju K. R., Phillips T. W. 2008. Responses of adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to light and combinations of attractants and light. Journal of Insect Behavior 21: 422–439. https://doi.org/10.1007/s10905-008-9140-5
  109. Sehto G. N., Rajput I. A., Ahmed A. M., Kolachi M. M., Pathan A. K., Depar M. S., Laghari R. A. K., Mal B. 2020. Monitoring cotton bollworms through synthetic sex pheromone traps. Pure and Applied Biology 9 (3): 2007–2013. https://doi.org/10.19045/bspab.2020.90214
  110. Shah M. A., Memon N., Baloch A. A. 2011. Use of sex pheromones and light traps for monitoring the population of adult moths of cotton bollworms in Hyderabad, Sindh, Pakistan. Sarhad Journal of Agriculture 27 (3): 435–442.
  111. Sharma H. (ed.). 2005. Heliothis/Helicoverpa Management: Emerging Trends and Prospects for Future Research. New Delhi: Oxford & IBH Publishing Co, 482 p.
  112. Sharma H. C., Srivastava C. P., Durairaj C., Gowda C. L. L. 2010. Pest management in grain legumes and climate change. In: S. S. Yadav, D. L. McNeil, R. Redden, S. A. Patil (eds). Climate Change and Management of Cool Season Grain Legume Crops. Dordrecht, Netherlands: Springer Science, p. 115–140.
  113. Sileshi G. 2006. Selecting the right statistical model for analysis of insect count data by using information theoretic measures. Bulletin of Entomological Research 96 (5): 479–488. https://doi.org/10.1079/BER2006449
  114. Silva A. A. da, Rebêlo J. M. M., Carneiro B. F., Castro M. P. P., de Sousa de Almeida M., Ponte I. S., Aguiar J. V. C., Silva F. S. 2019. Exploiting the synergistic effect of kairomones and light-emitting diodes on the attraction of phlebotomine sand flies to light traps in Brazil. Journal of Medical Entomology 56 (5): 1441–1445. https://doi.org/10.1093/jme/tjz073
  115. Slinker B. K. 1998. The statistics of synergism. Journal of molecular and cellular cardiology 30 (4): 723–731. https://doi.org/10.1006/jmcc.1998.0655
  116. Specht A., Sosa-Gómez D. R., Rios D. A. M., Claudino V. C. M., Paula-Moraes S. V., Malaquias J. V., Silva F. A. M., Roque-Specht V. F. 2021. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil: the big outbreak monitored by light traps. Neotropical Entomology 50: 53–67. https://doi.org/10.1007/s13744-020-00836-0
  117. Srivastava C., Pimbert M., Reed W. 1992. Monitoring of Helicoverpa (= Heliothis) armigera (Hubner) moths with light and pheromone traps in India. International Journal of Tropical Insect Science 13 (2): 205–210. https://doi.org/10.1017/S1742758400014363
  118. Srivastava C. P., Srivastava R. P. 1989. Comparison of Heliothis armigera (Hubner) male moth catches in light and pheromone traps at Udaipur, Rajasthan, India. International Journal of Tropical Insect Science 10 (5): 565–568. https://doi.org/10.1017/S1742758400021664
  119. Sullivan M., Molet T. [Интернет-документ]. 2007. CPHST Pest Datasheet for Helicoverpa armigera. USDA-APHIS-PPQ-CPHST. Revised April 2014. Revised June 2018 by L. Morales, H. Moylett. [URL: http://download.ceris.purdue.edu/file/3616]
  120. Tay W. T., Soria M. F., Walsh T., Thomazoni D., Silvie P., Behere G. T., Anderson C., Downes S. 2013. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PloS One 8 (11): e80134. https://doi.org/10.1371/journal.pone.0080134
  121. Thiagarajan D., Sachse S. 2022. Multimodal information processing and associative learning in the insect brain. Insects 13: 332. https://doi.org/10.3390/insects13040332
  122. Venette R. C., Davis E. E., Zaspel J., Heisler H., Larso M. 2003. Mini Risk Assessment. Old World bollworm, Helicoverpa armigera Hübner [Lepidoptera: Noctuidae]. Department of Entomology, University of Minnesota, 36 p.
  123. Visalakshmi V., Arjuna Rao P., Krishnayya P. 2000. Utility of sex pheromone for monitoring Heliothis armigera (Hüb.) infesting sunflower. Journal of Entomological Research 24 (3): 255–258.
  124. Wang Y., Chang Y., Zhang S., Jiang X., Yang B., Wang G. 2022. Comparison of phototactic behavior between two migratory pests, Helicoverpa armigera and Spodoptera frugiperda. Insects 13 (10): 917. https://doi.org/10.3390/insects13100917
  125. Wilson A., Bauer L. 1986. Light and pheromone traps: their place in monitoring Heliothis abundance. In: Proceedings of the 3rd Australian Cotton Conference. Surfers Paradise, Queensland, Australia, August 20th–21st, 1986. Wee Waa: Australian Cotton Grower’s Research Association, p. 239–243.
  126. Witzgall P., Kirsch P., Cork A. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36 (1): 80–100. https://doi.org/10.1007/s10886-009-9737-y
  127. Wu K. M., Guo Y. Y. 2005. The evolution of cotton pest management practices in China. Annual Review of Entomology 50: 31–52. https://doi.org/10.1146/annurev.ento.50.071803.130349
  128. Yadav A., Keval R., Yadav A. 2021. Monitoring of gram pod borer, Helicoverpa armigera (Hübner) through pheromone traps in different modules of short duration pigeonpea. Legume Research 44 (10): 1192–1197. https://doi.org/10.18805/LR-4231
  129. Yadav S. P. S., Lahutiya V., Paudel P. 2022. A review on the biology, ecology, and management tactics of Helicoverpa armigera (Lepidoptera: Noctuidae). Turkish Journal of Agriculture – Food Science and Technology 10 (12): 2467–2476. https://doi.org/10.24925/turjaf.v10i12.2467-2476.5211
  130. Zalucki M. P., Daglish G., Firempong S., Twine P. 1986. The biology and ecology of Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in Australia: what do we know? Australian Journal of Zoology 34 (6): 779–814. https://doi.org/10.1071/ZO9860779
  131. Zalucki M. P., Murray D. A., Gregg P. C., Fitt G. P., Twine P. H., Jones C. 1994. Ecology of Helicoverpa armigera (Hübner) and Heliothis punctigera (Wallengren) in the inland of Australia – larval sampling and host-plant relationships during winter and spring. Australian Journal of Zoology 42 (3): 329–346. https://doi.org/10.1071/ZO9940329
  132. Zhang J. P., Salcedo C., Fang Y. L., Zhang R. J., Zhang Z. N. 2012. An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera. Journal of Insect Physiology 58 (9): 1209–1216. https://doi.org/10.1016/j.jinsphys.2012.05.018
  133. Zhou X., Applebaum S. W., Coll M. 2000. Overwintering and spring migration in the bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Israel. Environmental Entomology 29 (6): 1289–1294. https://doi.org/10.1603/0046-225X-29.6.1289
  134. Zhou Y., Wu Q., Zhao S., Guo J., Wyckhuys K. A. G., Wu K. 2019. Migratory Helicoverpa armigera (Lepidoptera: Noctuidae) exhibits marked seasonal variation in morphology and fitness. Environmental Entomology 48 (3): 755–763. https://doi.org/10.1093/ee/nvz049

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Modified Bucket Funnel Trap, equipped with a synthetic sex pest attractant and two UV LEDs. 1 – trap placed in the corn crop; 2 – insects caught in a trap over 3 days, the vast majority of which were cotton bollworm imagoes.

Download (432KB)
3. Fig. 2. Results of three-day work of traps equipped with light diodes placed on corn crops during the flowering period. In the catches (1, 2), cotton bollworm adults predominate, which indicates a low danger of the applied trap placement scheme for non-target fauna, with the exception of green grasshoppers Tettigonia caudata (Ch.) and T. viridissima (L.), which penetrated into the trap containers and ate caught insects (3, 4).

Download (802KB)
4. Fig. 3. Dynamics of catching cotton bollworm adults per 1 trap equipped with one of three types of bait in the vicinity of the village. Botany (1–3) and the villages of Kurchanskaya (4, 5) of the Krasnodar Territory in 2021 (1), 2022 (2, 4) and 2023. (3, 5) Designations of bait in the trap: solid line – light, dashed line – SPA, dotted line – SPA + light

Download (307KB)

Copyright (c) 2024 Russian Academy of Sciences