Estimates of annual carbon dioxide fluxes from soil in spruce forests of the «Ural-Carbon» carbon measurement supersite based on incomplete time series with classical regression approaches and machine learning

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Annual carbon dioxide flux from soils of different biomes plays a key role in creating global climate models and in analyzing carbon cycles in terrestrial ecosystems. However, there are significant gaps in such studies at a regional scale. Due to the high complexity of obtaining daily soil respiration values, various modeling methods are used. In this work, based on 2760 soil respiration measurements in spruce forests of the «Ural-Carbon» carbon measurement supersite (Middle Urals) carried out in autumn 2021 and from April to October 2022, annual soil respiration values were estimated using classical regression approaches and machine learning. We also investigated the dependence of the results on the complexity of the model (number of predictors) and the methods used (extrapolation by the random forest model and combined approaches to estimate winter CO₂ fluxes). The «simplified» model with 7 predictors showed only a slight decrease in accuracy compared to the full model with 21 predictors (R² = 0.89, MSE = 0.31 vs. R² = 0.92, MSE = 0.22). Predictors based on remote sensing turned out to be more significant for the accuracy of the model than data measured in the field. Although the initial results of different approaches varied, adding winter respiration values taken from the literature to the random forest model and averaging the values of the combined approaches allowed us to achieve similar values of annual soil respiration: 830.3 ± 6.4 and 851.6 ± 8.0 g C/m²year, respectively.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Smorkalov

Ural Federal University; Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ivan.a.smorkalov@gmail.com
Ресей, 620002 Yekaterinburg; 620144 Yekaterinburg

Әдебиет тізімі

  1. Yang M., Yu G.R., He N.P. et al. A Method for Estimating Annual Cumulative Soil/Ecosystem Respiration and CH4 Flux from Sporadic Data Collected Using the Chamber Method // Atmosphere. 2019. V. 10. № 10. Art. 623. https://doi.org/10.3390/atmos10100623
  2. Курганова И.Н., Лопес де Гереню В.О., Мякшина Т.Н. и др. Эмиссия CO₂ из почв различных экосистем южно-таежной зоны: анализ данных непрерывных 12-летних круглогодичных наблюдений // Доклады РАН. 2011. Т. 436. № 6. С. 843–846.
  3. Mukhortova L., Schepaschenko D., Moltchanova E. et al. Respiration of Russian soils: Climatic drivers and response to climate change // Science of the Total Environment. 2021. V. 785. Art. 147314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147314
  4. Кудеяров B.Н., Курганова И.Н. Дыхание почв России: анализ базы данных, многолетний мониторинг, общие оценки // Почвоведение. 2005. № 9. С. 1112–1121.
  5. Карбоновые полигоны (официальный сайт) / URL: https://carbon-polygons.ru/
  6. Гафуров Ф.Г. Почвы Свердловской области. Екатеринбург: Изд-во Урал. ун-та, 2008. 417 с.
  7. Усольцев В.А., Воробейчик Е.Л., Бергман И.Е. Биологическая продуктивность лесов Урала в условиях техногенного загрязнения: исследование системы связей и закономерностей. Екатеринбург: Изд-во УГЛТУ, 2012. 365 с.
  8. Фомин В.В., Рогачев В.Е., Агапитов Е.М. и др. Депонирование углерода основными лесообразующими древесными породами карбонового полигона Свердловской области // Леса России и хозяйство в них. 2024. № 4(91). С. 4–16. https://doi.org/10.51318/FRET.2024.91.4.001
  9. Сморкалов И.А., Воробейчик Е.Л. Влияние отдельных деревьев на дыхание почвы лесных экосистем в условиях промышленного загрязнения // Почвоведение. 2023. № 9. С. 1116–1127.
  10. Luo Y., Zhou X. Soil respiration and the environment. Burlington: Acad. Press, 2006. 316 p.
  11. Карелин Д.В., Почикалов А.В., Замолодчиков Д.Г., Гитарский М.Л. Факторы пространственно-временной изменчивости потоков CO₂ из почв южно-таежного ельника на Валдае // Лесоведение. 2014. № 4. С. 56–66.
  12. Лупян Е.А., Савин И.Ю., Барталев С.А. и др. Спутниковый сервис мониторинга состояния растительности («Вега») // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 1. С. 190–198.
  13. Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index // Journal of Climate. 2010. V. 23. № 7. P. 1696–1718. https://doi.org/10.1175/2009jcli2909.1
  14. Beguería S., Vicente-Serrano S.M., Reig F., Latorre B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring // International Journal of Climatology. 2014. V. 34. № 10. P. 3001–3023. https://doi.org/10.1002/joc.3887
  15. Kursa M.B., Rudnicki W.R. Feature selection with the Boruta package // Journal of Statistical Software. 2010. V. 36. № 11. P. 1– 3. https://doi.org/10.18637/jss.v036.i11
  16. randomForest: Breiman and Cutler’s Random Forests for classification and regression version 4.6-14 / URL: https://cran.r-project.org/package=randomForest
  17. caret: Classification and Regression Training version 6.0-86 / URL: https://cran.r-project.org/package=caret
  18. Jian J., Vargas R., Anderson-Teixeira K.J. et al. A global database of soil respiration data. Version 5.0. 2021. https://doi.org/10.3334/ORNLDAAC/1827
  19. Mavrovic A., Sonnentag O., Lemmetyinen J. et al. Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments // Biogeosciences. 2023. V. 20. № 24. P. 5087–5108. https://doi.org/10.5194/bg-20-5087-2023
  20. Smorkalov I.A. Soil respiration of spruce-fir forests at the carbon supersite “Ural-Carbon”, Russia, Sverdlovsk region on 2021–2022. 2023. https://doi.org/10.17632/8ns8zprx9c.1
  21. Осипов А.Ф. Влияние межгодовых различий метеорологических характеристик вегетационного периода на эмиссию CO₂ с поверхности почвы среднетаежного сосняка бруснично-лишайникового (Республика Коми) // Почвоведение. 2018. Т. 12. С. 1455–1463. https://doi.org/10.1134/S0032180X18120080
  22. Кадулин М.С., Копцик Г.Н. Эмиссия CO₂ почвами в зоне влияния горно-металлургического комбината “Североникель” в Кольской Субарктике // Почвоведение. 2013. № 11. С. 1387–1396. https://doi.org/https://doi.org/10.7868/S0032180X13110063
  23. Kozlov M.V., Zvereva E.L., Zverev V.E. Impacts of point polluters on terrestrial biota: Comparative analysis of 18 contaminated areas. Dordrecht: Springer, 2009. 466 p.
  24. Takakai F., Desyatkin A.R., Lopez C.M.L. et al. Influence of forest disturbance on CO₂, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia // Soil Science and Plant Nutrition. 2008. V. 54. № 6. P. 938–949. https://doi.org/https://doi.org/10.1111/j.1747-0765.2008.00309.x
  25. Сморкалов И.А. Изменчивость дыхания почвы: оценка вклада пространства и времени с помощью алгоритма random forest // Экология. 2022. № 4. С. 299–311. https://doi.org/https://doi.org/10.31857/S0367059722040059
  26. Kurganova I., De Gerenyu V.L., Rozanova L. et al. Annual and seasonal CO₂ fluxes from Russian southern taiga soils // Tellus B: Chemical and Physical Meteorology. 2003. V. 55. № 2. P. 338–344. https://doi.org/10.3402/tellusb.v55i2.16724
  27. Shibistova O., Lloyd J., Zrazhevskaya G. et al. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia // Tellus, Series B: Chemical and Physical Meteorology. 2002. V. 54. № 5. P. 568–589.
  28. Yan J., Feng Y., Li J. et al. Response of soil respiration and Q₁₀ to temperature and moisture in naturally regenerated and bare lands based on an 11-year observation period // CATENA. 2022. V. 208. Art. 105711. https://doi.org/https://doi.org/10.1016/j.catena.2021.105711
  29. Berryman E.M., Vanderhoof M.K., Bradford J.B. et al. Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data // J. Geophys. Res.-Biogeosci. 2018. V. 123. № 10. P. 3231–3249. https://doi.org/10.1029/2018jg004613
  30. Shiri N., Shiri J., Kazemi M.H., Xu T.R. Estimation of CO₂ flux components over northern hemisphere forest ecosystems by using random forest method through temporal and spatial data scanning procedures // Environmental Science and Pollution Research. 2021. P. Published online. https://doi.org/10.1007/s11356-021-16501-x
  31. Hengl T., Nussbaum M., Wright M.N. et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables // PeerJ. 2018. V. 6. Art. e5518. https://doi.org/10.7717/peerj.5518
  32. Kurganova I., Lopes de Gerenyu V., Khoroshaev D. et al. Temperature sensitivity of soil respiration in two temperate forest ecosystems: the synthesis of a 24-year continuous observation // Forests. 2022. V. 13. № 9. Art. 1374.
  33. Reinmann A.B., Templer P.H. Increased soil respiration in response to experimentally reduced snow cover and increased soil freezing in a temperate deciduous forest // Biogeochemistry. 2018. V. 140. № 3. P. 359–371. https://doi.org/10.1007/s10533-018-0497-z
  34. Monson R.K., Lipson D.L., Burns S.P. et al. Winter forest soil respiration controlled by climate and microbial community composition // Nature. 2006. V. 439. № 7077. P. 711–714. https://doi.org/10.1038/nature04555

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the arrangement of test plots: Cluster – cluster, Site – area, Plot – test plot.

Жүктеу (833KB)
3. Fig. 2. Dynamics of soil temperature (a) and air (b) and soil moisture (c) throughout the year.

Жүктеу (685KB)
4. Fig. 3. “Importance” of predictors estimated by the Boruta algorithm: a – all predictors, b – predictors measured in the field are excluded. Smin, Smean, Smax – shadow predictors.

Жүктеу (316KB)
5. Fig. 4. Correlations of predictors with each other and with the soil respiration rate.

Жүктеу (960KB)
6. Fig. 5. Dynamics of soil respiration throughout the year.

Жүктеу (384KB)

© Russian Academy of Sciences, 2025