Accumulation and localization of metals in lichen thallus under conditions of dust pollution during open mining of boxite deposits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the accumulation and localization of metals in the foliose lichens Lobaria pulmonaria, Hypogymnia physodes and Peltigera aphthosa, living in the impact zone of the Sredne-Timansky bauxite mine. A significant accumulation of Al (16–19 g/kg), Fe (16–20 g/kg) and Ti (0.3–0.7 g/kg) by thalli was revealed. From 29 to 82% of the total content of these metals is localized in dust particles weakly attached to the surface of the thalli. The total proportion of intra- and extracellularly bound Al, Fe and Ti did not exceed 11%. 15–56% of these metals were found in the residual fraction. An increase in the content of Cu, Pb, Co and Ni was detected in thalli collected in the impact area. It has been shown that the localization of metals in thalli depends both on the element under consideration and on the morphological and anatomical characteristics of the thalli: in L. pulmonaria, fine mineral particles were localized on the surface of the thalli; in the thalli of P. aphthosa, which do not have a lower cortex, mineral inclusions were found throughout the entire thickness of the thalli.

Full Text

Restricted Access

About the authors

I. G. Zakhozhiy

Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: zakhozhiy@ib.komisc.ru
Russian Federation, 167982, Syktyvkar

M. A. Shelyakin

Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Email: zakhozhiy@ib.komisc.ru
Russian Federation, 167982, Syktyvkar

References

  1. Garty J. Biomonitoring atmospheric heavy metals with lichens: Theory and application // Crit. Rev. Plant. Sci. 2001. V. 20. № 4. P. 309–371. https://doi.org/10.1080/20013591099254
  2. Bačkor M., Loppi S. Interactions of lichens with heavy metals // Biol. Plant. 2009. V. 53. № 2. P. 214–222. https://doi.org/10.1007/s10535-009-0042-y
  3. Rola K. Insight into the pattern of heavy-metal accumulation in lichen thalli // J. Trace Elem. Med. Biol. 2020. V. 61. P. 126512. https://doi.org/10.1016/j.jtemb.2020.126512
  4. Bačkor M., Kováčik J., Dzubaj A., Bačkorová M. Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss // Plant Growth Regul. 2009. V. 58. № 3. P. 279–286. https://doi.org/10.1007/s10725-009-9376-x
  5. Bačkor M., Kováčik J, Piovár J. et al. Physiological aspects of cadmium and nickel toxicity in the lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis // Water Air Soil Pollut. 2010. V. 207. № 1–4. P. 253–262. https://doi.org/10.1007/s11270-009-0133-6
  6. Parviainen A., Casares-Porcel M., Marchesi C., Garrido C. J. Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain) // Environ. Pollut. 2019. V. 253. P. 918–929. https://doi.org/10.1016/j.envpol.2019.07.086
  7. Mikhailova I. N., Sharunova I. P. Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes // Russ. J. Ecol. 2008. V. 39. № 5. P. 346–352. https://doi.org/10.1134/S1067413608050068
  8. Beckett R. P., Brown D. H. The control of cadmium uptake in the lichen genus Peltigera // J. Exp. Bot. 1984. V. 35. № 7. P. 1071–1082. https://doi.org/10.1093/jxb/35.7.1071
  9. Budka D., Przybyłowicz W. J., Mesjasz-Przybyłowicz J., Sawicka-Kapusta K. Elemental distribution in lichens transplanted to polluted forest sites near Kraków (Poland) // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 189. № 1–4. P. 499–505. https://doi.org/10.1016/S0168-583X(01)01131-4
  10. Purvis O.W., Pawlik-Skowrońska B. Lichens and metals // British Mycological Society Symposia Series. Amsterdam: Elsevier, 2008. V. 27. P. 175–200. https://doi.org/10.1016/S0275-0287(08)80054-9
  11. Degtjarenko P., Matos P., Marmor L. et al. Functional traits of epiphytic lichens respond to alkaline dust pollution // Fungal Ecol. 2018. V. 36. P. 81–88. https://doi.org/10.1016/j.funeco.2018.08.006
  12. Pystina T.N., Kuznetsova E.G., Novakovskiy A.B. Reaction of the lichen Hypogymnia physodes to dust pollution in the influence zone of the middle timan bauxite mine // Contemp. Probl. Ecol. 2023. V. 16. № 3. P. 379–389. https://doi.org/10.1134/S1995425523030101
  13. Grantz D., Garner J. H., Johnson D. Ecological effects of particulate matter // Environ. Int. 2003. V. 29. № 2–3. P. 213–239. https://doi.org/10.1016/S0160-4120(02)00181-2
  14. Афанасенко О.В., Бармин А.В., Потапова М.А. Землянский В. Н. Исследования экологической безопасности и мониторинг воздействия источников загрязнения на территории Средне-Тиманского бокситового рудника ОАО «Боксит Тимана» // Изв. Коми научного центра УрО РАН. 2010. Т. 2. № 2. С. 44–47.
  15. Branquinho C., Brown D.H. A method for studying the cellular location of lead in lichens // Lichenologist. 1994. V. 26. № 1. P. 83–90. https://doi.org/10.1006/lich.1994.1007
  16. Головко Т.К., Шелякин М.А., Захожий И.Г. и др. Реакция лишайников на загрязнение среды при добыче бокситовой руды в таежной зоне // Теоретическая и прикладная экология. 2018. № 2. С. 44–53. https://doi.org/10.25750/1995-4301-2018-2-044/ 2–053/1
  17. Wolterbeek H. T., Garty J., Reis M. A., Freitas M. C. Biomonitors in use: lichens and metal air pollution // Trace Metals and Other Contaminants in the Environment. Elsevier. 2003. V. 6. P. 377–419. https://doi.org/10.1016/S0927-5215(03)80141-8
  18. Василевич М. И., Василевич Р. С. Особенности накопления тяжелых металлов эпифитными лишайниками в таежной зоне фоновых территорий Европейского Северо-Востока России // Экология. 2018. № 1. С. 17–23. https://doi.org/10.7868/S036705971801002X
  19. Табаленкова Г.Н., Далькэ И.В., Головко Т.К. Элементный состав некоторых видов лишайников бореальной зоны на Европейском Северо-Востоке // Изв. Самарского научного центра РАН. 2016. Т. 18. № 2. С. 221–225.
  20. Вахрушев А.В., Лютоев В.П., Силаев В.И. Кристаллохимические особенности железистых минералов в бокситах Вежаю-Ворыквинского месторождения (Средний Тиман) // Вестник Института геологии Коми НЦ УрО РАН. 2012. № 10. С. 14–18.
  21. Seaward M.R.D. Lichen ecology of the Scunthorpe Heathlands. I. Mineral accumulation // Lichenologist. 1973. V. 5. № 5–6. P. 423–433. https://doi.org/10.1017/S0024282973000472
  22. Пауков А.Г., Круглова Е.П., Пряхина В.И. и др. Накопление элементов в талломах представителей рода Circinaria link (лихенизированные аскомицеты) в аридных местообитаниях // Проблемы ботаники Южной Сибири и Монголии. 2021. Т. 20. № 1. С. 341–342. https://doi.org/10.14258/pbssm.2021068
  23. Clark B.M., Mangelson N.F., St. Clair L.L. et al. Analysis of rocky mountain lichens using PIXE: Characteristics of iron and titanium // AIP Conference Proceedings – American Institute of Physics. 1997. P. 559–562. https://doi.org/10.1063/1.52702
  24. Ohnuki T., Sakamoto F., Kozai N. et al. Micro-pixe study on sorption behaviors of cobalt by lichen biomass // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 210. P. 407–411. https://doi.org/10.1016/S0168-583X(03)01048-6
  25. Puckett K. J., Finegan E. J. An analysis of the element content of lichens from the Northwest Territories, Canada // Can. J. Bot. 1980. V. 58. № 19. P. 2073–2089. https://doi.org/10.1139/b80-240
  26. Chiarenzelli J.R., Aspler L.B., Ozarko D.L. et al. Heavy metals in lichens, southern district of keewatin, Northwest Territories, Canada // Chemosphere. 1997. V. 35. № 6. P. 1329–1341. https://doi.org/10.1016/S0045-6535(97)00168-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An image of a cross-section of the Lobaria pulmonaria thallus obtained in the mode of detection of backscattered electrons (a) and a map of the distribution of elements: b – Al, c – Fe, d – Si. The areas with bright coloring correspond to the maximum content of the element; VK is the upper crust layer, NK is the lower crust layer; the elemental composition of mineral particles (L1–L5) is shown in Table 2.

Download (506KB)
3. Fig. 2. An image of a cross-section of the Peltigera aphthosa thallus obtained in the mode of detection of backscattered electrons (a) and a map of the distribution of elements: b – Al, c – Fe, d – Si. The areas with bright coloring correspond to the maximum content of the element; VK – the upper crust layer, MS – the medullary layer; the elemental composition of mineral particles (P1–P5) is shown in Table 2.

Download (629KB)
4. Fig. 3. Analysis of the main components of the distribution of the relative proportion of metals in different fractions from lichen thallomas of Hypogymnia physodes (a), Lobaria pulmonaria (b) and Peltigera aphthosa (c): the results for thallomas from the conditionally background territory are presented above, and for those selected in the impact zone from below. A solid line unites the metals contributing the main load to Factor 1 (horizontal axis) and/or Factor 2 (vertical axis); 1, 2 and 3 are dust, EDTA–Na2 are extractable and residual metal fractions, respectively.

Download (363KB)

Copyright (c) 2024 Russian Academy of Sciences