Accumulation and localization of metals in lichen thallus under conditions of dust pollution during open mining of boxite deposits
- Authors: Zakhozhiy I.G.1, Shelyakin M.A.1
-
Affiliations:
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences
- Issue: No 1 (2024)
- Pages: 34-45
- Section: Articles
- URL: https://kazanmedjournal.ru/0367-0597/article/view/673016
- DOI: https://doi.org/10.31857/S0367059724010045
- EDN: https://elibrary.ru/XBSGIO
- ID: 673016
Cite item
Abstract
We studied the accumulation and localization of metals in the foliose lichens Lobaria pulmonaria, Hypogymnia physodes and Peltigera aphthosa, living in the impact zone of the Sredne-Timansky bauxite mine. A significant accumulation of Al (16–19 g/kg), Fe (16–20 g/kg) and Ti (0.3–0.7 g/kg) by thalli was revealed. From 29 to 82% of the total content of these metals is localized in dust particles weakly attached to the surface of the thalli. The total proportion of intra- and extracellularly bound Al, Fe and Ti did not exceed 11%. 15–56% of these metals were found in the residual fraction. An increase in the content of Cu, Pb, Co and Ni was detected in thalli collected in the impact area. It has been shown that the localization of metals in thalli depends both on the element under consideration and on the morphological and anatomical characteristics of the thalli: in L. pulmonaria, fine mineral particles were localized on the surface of the thalli; in the thalli of P. aphthosa, which do not have a lower cortex, mineral inclusions were found throughout the entire thickness of the thalli.
Full Text

About the authors
I. G. Zakhozhiy
Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: zakhozhiy@ib.komisc.ru
Russian Federation, 167982, Syktyvkar
M. A. Shelyakin
Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences
Email: zakhozhiy@ib.komisc.ru
Russian Federation, 167982, Syktyvkar
References
- Garty J. Biomonitoring atmospheric heavy metals with lichens: Theory and application // Crit. Rev. Plant. Sci. 2001. V. 20. № 4. P. 309–371. https://doi.org/10.1080/20013591099254
- Bačkor M., Loppi S. Interactions of lichens with heavy metals // Biol. Plant. 2009. V. 53. № 2. P. 214–222. https://doi.org/10.1007/s10535-009-0042-y
- Rola K. Insight into the pattern of heavy-metal accumulation in lichen thalli // J. Trace Elem. Med. Biol. 2020. V. 61. P. 126512. https://doi.org/10.1016/j.jtemb.2020.126512
- Bačkor M., Kováčik J., Dzubaj A., Bačkorová M. Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss // Plant Growth Regul. 2009. V. 58. № 3. P. 279–286. https://doi.org/10.1007/s10725-009-9376-x
- Bačkor M., Kováčik J, Piovár J. et al. Physiological aspects of cadmium and nickel toxicity in the lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis // Water Air Soil Pollut. 2010. V. 207. № 1–4. P. 253–262. https://doi.org/10.1007/s11270-009-0133-6
- Parviainen A., Casares-Porcel M., Marchesi C., Garrido C. J. Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain) // Environ. Pollut. 2019. V. 253. P. 918–929. https://doi.org/10.1016/j.envpol.2019.07.086
- Mikhailova I. N., Sharunova I. P. Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes // Russ. J. Ecol. 2008. V. 39. № 5. P. 346–352. https://doi.org/10.1134/S1067413608050068
- Beckett R. P., Brown D. H. The control of cadmium uptake in the lichen genus Peltigera // J. Exp. Bot. 1984. V. 35. № 7. P. 1071–1082. https://doi.org/10.1093/jxb/35.7.1071
- Budka D., Przybyłowicz W. J., Mesjasz-Przybyłowicz J., Sawicka-Kapusta K. Elemental distribution in lichens transplanted to polluted forest sites near Kraków (Poland) // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 189. № 1–4. P. 499–505. https://doi.org/10.1016/S0168-583X(01)01131-4
- Purvis O.W., Pawlik-Skowrońska B. Lichens and metals // British Mycological Society Symposia Series. Amsterdam: Elsevier, 2008. V. 27. P. 175–200. https://doi.org/10.1016/S0275-0287(08)80054-9
- Degtjarenko P., Matos P., Marmor L. et al. Functional traits of epiphytic lichens respond to alkaline dust pollution // Fungal Ecol. 2018. V. 36. P. 81–88. https://doi.org/10.1016/j.funeco.2018.08.006
- Pystina T.N., Kuznetsova E.G., Novakovskiy A.B. Reaction of the lichen Hypogymnia physodes to dust pollution in the influence zone of the middle timan bauxite mine // Contemp. Probl. Ecol. 2023. V. 16. № 3. P. 379–389. https://doi.org/10.1134/S1995425523030101
- Grantz D., Garner J. H., Johnson D. Ecological effects of particulate matter // Environ. Int. 2003. V. 29. № 2–3. P. 213–239. https://doi.org/10.1016/S0160-4120(02)00181-2
- Афанасенко О.В., Бармин А.В., Потапова М.А. Землянский В. Н. Исследования экологической безопасности и мониторинг воздействия источников загрязнения на территории Средне-Тиманского бокситового рудника ОАО «Боксит Тимана» // Изв. Коми научного центра УрО РАН. 2010. Т. 2. № 2. С. 44–47.
- Branquinho C., Brown D.H. A method for studying the cellular location of lead in lichens // Lichenologist. 1994. V. 26. № 1. P. 83–90. https://doi.org/10.1006/lich.1994.1007
- Головко Т.К., Шелякин М.А., Захожий И.Г. и др. Реакция лишайников на загрязнение среды при добыче бокситовой руды в таежной зоне // Теоретическая и прикладная экология. 2018. № 2. С. 44–53. https://doi.org/10.25750/1995-4301-2018-2-044/ 2–053/1
- Wolterbeek H. T., Garty J., Reis M. A., Freitas M. C. Biomonitors in use: lichens and metal air pollution // Trace Metals and Other Contaminants in the Environment. Elsevier. 2003. V. 6. P. 377–419. https://doi.org/10.1016/S0927-5215(03)80141-8
- Василевич М. И., Василевич Р. С. Особенности накопления тяжелых металлов эпифитными лишайниками в таежной зоне фоновых территорий Европейского Северо-Востока России // Экология. 2018. № 1. С. 17–23. https://doi.org/10.7868/S036705971801002X
- Табаленкова Г.Н., Далькэ И.В., Головко Т.К. Элементный состав некоторых видов лишайников бореальной зоны на Европейском Северо-Востоке // Изв. Самарского научного центра РАН. 2016. Т. 18. № 2. С. 221–225.
- Вахрушев А.В., Лютоев В.П., Силаев В.И. Кристаллохимические особенности железистых минералов в бокситах Вежаю-Ворыквинского месторождения (Средний Тиман) // Вестник Института геологии Коми НЦ УрО РАН. 2012. № 10. С. 14–18.
- Seaward M.R.D. Lichen ecology of the Scunthorpe Heathlands. I. Mineral accumulation // Lichenologist. 1973. V. 5. № 5–6. P. 423–433. https://doi.org/10.1017/S0024282973000472
- Пауков А.Г., Круглова Е.П., Пряхина В.И. и др. Накопление элементов в талломах представителей рода Circinaria link (лихенизированные аскомицеты) в аридных местообитаниях // Проблемы ботаники Южной Сибири и Монголии. 2021. Т. 20. № 1. С. 341–342. https://doi.org/10.14258/pbssm.2021068
- Clark B.M., Mangelson N.F., St. Clair L.L. et al. Analysis of rocky mountain lichens using PIXE: Characteristics of iron and titanium // AIP Conference Proceedings – American Institute of Physics. 1997. P. 559–562. https://doi.org/10.1063/1.52702
- Ohnuki T., Sakamoto F., Kozai N. et al. Micro-pixe study on sorption behaviors of cobalt by lichen biomass // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 210. P. 407–411. https://doi.org/10.1016/S0168-583X(03)01048-6
- Puckett K. J., Finegan E. J. An analysis of the element content of lichens from the Northwest Territories, Canada // Can. J. Bot. 1980. V. 58. № 19. P. 2073–2089. https://doi.org/10.1139/b80-240
- Chiarenzelli J.R., Aspler L.B., Ozarko D.L. et al. Heavy metals in lichens, southern district of keewatin, Northwest Territories, Canada // Chemosphere. 1997. V. 35. № 6. P. 1329–1341. https://doi.org/10.1016/S0045-6535(97)00168-9
Supplementary files
