Radial growth of Pinus sylvestris L. in island bores of Northern Kazakhstan in the context of climate and geomorphological conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tree-ring chronologies based on the width of the annual ring of Scots pine (Pinus sylvestris L.) were studied at 8 test sites in island forests in the north of the Republic of Kazakhstan from the Turgai trough to the eastern part of the Kazakh small hills. An analysis of the relationships between the radial growth of pine and climate showed that the climate signal in chronologies can change depending on geomorphological conditions determined by the edaphic factor, relief and absolute elevations. These features must be taken into account when using tree-ring chronologies for spatiotemporal climate reconstructions.

Full Text

Restricted Access

About the authors

M. A. Gurskaya

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: marina_gurskaya@mail.ru
Russian Federation, 620144, Ekaterinburg

L. I. Agafonov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: lagafonovc@ipae.uran.ru
Russian Federation, 620144, Ekaterinburg

V. V. Kukarskih

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: marina_gurskaya@mail.ru
Russian Federation, 620144, Ekaterinburg

A. Y. Surkov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: marina_gurskaya@mail.ru
Russian Federation, 620144, Ekaterinburg

Feng Chen

Yunnan University

Email: marina_gurskaya@mail.ru

Institute of Transboundary River Basins and Ecological Security

China, 650500, Kunming Yunnan

References

  1. Davi N.K., D’Arrigo R., Jacoby G.C. et al. A long-term context (931–2005 C.E.) for rapid warming over Central Asia // Quaternary Science Reviews. 2015. V. 121. P. 89–97. http://dx.doi.org/10.1016/j.quascirev.2015.05.020
  2. Akkemik U., Köse N., Kopabayeva A., Mazarzhanova K. October to July precipitation reconstruction for Burabai region (Kazakhstan) since 1744 // Int. J. Biometeorol. 2020. V. 64. P. 803–813. https://doi.org/10.1007/s00484-020-01870-8
  3. Ljungqvist F.C., Piermattei A., Seim A. et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium // Quaternary Science Reviews. 2020. V. 230. Art. 106074. https://doi.org/10.1016/j.quascirev.2019.106074
  4. Zhao X., Chen F., Seim A. et al. Global warming leads to growth increase in Pinus sylvestris in the Kazakh steppe // Forest Ecology and Management. 2024. V. 553. Art. 121635. https://doi.org/10.1016/j.foreco.2023.121635
  5. Кучеров С.Е. Реконструкция летних осадков на Южном Урале за последние 375 лет на основе анализа радиального прироста лиственницы Сукачева // Экология. 2010. № 4. С. 248–256. [Kucherov S.E. Reconstruction of summer precipitation in the Southern Urals over the last 375 years based on analysis of radial increment in the Siberian larch // Russ. J. of Ecology. 2010. V. 41. № 4. С. 284–292. doi: 10.1134/S1067413610040028]
  6. Рыгалова Н.В., Быков Н.И. Пространственно-временная изменчивость климатического сигнала древесно-кольцевых хронологий ленточных и Приобских боров // Журнал Сибирского федерального ун-та. Сер. биол. 2015. Т. 8. № 4. С. 394–409. https://doi.org/10.17516/1997-1389-2015-8-4-394-409
  7. Taynik A.V., Barinov V.V., Myglan V.S. et al. Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai-Sayan mountains // Dendrochronologia. 2016. V. 39. P. 10–16. https://doi.org/10.1016/j.dendro.2015.12.003
  8. Баринов В.В., Мыглан В.С., Тайник А.В. Экстремальные климатические события в Центральном Алтае за последние 1500 лет по данным древесно-кольцевой хронологии JELO // Изв. РАН. Сер. географическая. 2017. № 1. С. 91–102. https://doi.org/10.15356/0373-2444-2017-1-91-102
  9. Баринов В.В., Мыглан В.С., Тайник А.В. и др. Экстремальные климатические события в Алтае-Саянском регионе как индикатор сильных вулканических извержений // Геофизические процессы и биосфера. 2018. Т. 17. № 3. С. 45–61. https://doi.org/10.21455/GPB2018.3-3
  10. Агафонов Л.И., Гурская М.А., Кукарских В.В. и др. Островные боры Южного Урала и ленточные боры Алтая как объекты дендроклиматических исследований // Экология. 2021. № 5. С. 325–334. doi: 10.31857/S0367059721050036 [Agafonov L.I., Gurskaya M.A., Kukarskih V.V. et al. Insular pine forests of the Southern Urals and ribbon pine forests of the Altai as objects of dendroclimatic research // Russ. J. Ecol. 2021. V. 52. P. 349–357.] https://doi.org/10.1134/S1067413621050039
  11. Babushkina E.A., Zhirnova D.F., Belokopytova L.V. et al. Response of four tree species to changing climate in a moisture-limited area of South Siberia // Forests. 2019. V. 10. № 11. 999. https://doi.org/10.3390/f10110999
  12. Белокопытова Л.В., Бабушкина Е.А., Жирнова Д.Ф. и др. Климатический отклик радиального прироста хвойных лесостепи юга Сибири: сравнение трех подходов // Сибирский экологич. журн. 2018. Т. 25. № 4. С. 411–424. doi: 10.15372/SEJ20180403 [Belokopytova L.V., Babushkina E.A., Zhirnova D.F. et al. Climatic response of conifer radial growth in forest-steppe of South Siberia: comparison of three approaches // Contemporary Problems of Ecology. 2018. V. 11. № 4. P. 366–376.] https://doi.org/10.1134/S1995425518040030
  13. Kostyakova T.V., Babushkina E.A., Belokopytova L.V., Touchan R. Precipitation reconstruction for the Khakassia region, Siberia, from tree rings // The Holocene. V. 28. P. 377–385. https://doi.org/10.1177/0959683617729450
  14. Zhirnova D.F., Belokopytova L.V., Meko D.M. et al. Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs // Scientific Reports. 2021. V. 11. 14266. https://doi.org/10.1038/s41598-021-93745-0
  15. Tabakova M.A, Arzac A., Martinez E., Kirdyanov A.V. Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia // Dendrochronologia. 2020. V. 62. https://doi.org/10.1016/j.dendro.2020.125709
  16. Climate Change in Central Asia. A visual synthesis // Zoi Environment Network. 2009. 80 p.
  17. Kazakhstan’s Second National Communication to the Conference of the Parties to the United Nations Framework Convention on Climate Change. Ministry of Environment Protection, Astana, 2009. 164 p.
  18. Farooq I., Shah A.R., Salik K.M., Mujtaba I. Annual, seasonal and monthly trend analysis of temperature in Kazakhstan during 1970-2017 using non-parametric statistical methods and GIS technologies // Earth Systems and Environment. 2021. V. 5. P. 575–595. https://doi.org/10.1007/s41748-021-00244-3
  19. Hu Y., Han Y., Zhang Y. Land desertification and its influencing factors in Kazakhstan // Journal of Arid Environments. 2020. V. 180. Art. 104203. https://doi.org/10.1016/j.jaridenv.2020.104203
  20. Zhang P., Jeong J.-H., Yoon J.-H. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point // Science. 2020. V. 370. P. 1095–1099. https://doi.org/10.1126/science.abb3368
  21. Zubairov B., Lentschke J., Schroder H. Dendroclimatology in Kazakhstan // Dendrochronologia. 2019. V. 56. https://doi.org/10.1016/j.dendro.2019.05.006
  22. Jiang S., Zhang T., Yuan Y. et al. Drought reconstruction based on tree-ring earlywood of Picea obovata Ledeb. for the southern Altay Mountains // Geografiska Annaler: Series A, Physical Geography. 2020. V. 102. P. 267–286. doi: 10.1080/04353676.2020.1773060
  23. Zhang R., Qin l., Shang H. et al. Climatic change in southern Kazakhstan since 1850 C.E. inferred from tree rings // Int. J. Biometeorol. 2020. V. 64. P. 841–851. https://doi.org/10.1007/s00484-020-01873-5
  24. Kopabayeva A., Mazarzhanova K., Kose N., Akkemik U. Tree-ring chronologies of Pinus sylvestris from Burabai Region (Kazakhstan) and their response to climate change // Dendrobiology. 2017. V. 78. P. 96–110. https://doi.org/10.12657/denbio.078.010.
  25. Mazarzhanova K., Kopabaeva A., Kose N., Akkemik U. The first forest fire history of the Burabai Region (Kazakhstan) from tree rings of Pinus sylvestris // Turk. J. Agric. For. 2017. V. 41. P. 165–174. http://journals.tubitak.gov.tr/agriculture/
  26. Mapitov N.B., Belokopytova L.V., Zhirnova D.F. et al. Factors limiting radial growth of conifers on their semiarid borders across Kazakhstan // Biology. 2023. V. 12. Art. 604. https://doi.org/10.3390/biology12040604
  27. Байшоланов С.С., Павлова В.Н., Жакиева А.Р. и др. Агроклиматические ресурсы Северного Казахстана // Гидрометеорологические исследования и прогнозы. 2018. № 1. С. 168–184. https://elibrary.ru/item.asp?id=35138146
  28. Казахстан. Природные условия и естественные ресурсы СССР. Т. 7. / Ред. И.П. Герасимов. М.: Наука, 1969. 482 с.
  29. Deng H., Yin Y., Xiang Han. Vulnerability of vegetation activities to drought in Central Asia // Environ. Res. Lett. 2020. V. 15. Art. 084005. https://doi.org/10.1088/1748-9326/ab93fa
  30. Lopez Fernandez M.L., Zhumabayev D., Garcia R.M. et al. Assessment of bioclimatic change in Kazakhstan, end 20th – middle 21st centuries, according to the PRECIS prediction // PloS One. 2020. V. 15. Art. e0239514. https://doi.org/10.1371/journal.pone.0239514
  31. The Sixth National report on biological diversity in the Republic of Kazakhstan. Astana, 2018. 226 p.
  32. Бирюков В.Н., Маланьин А.Н. Генетическая классификация лесов Северного, Центрального и Южного Казахстана // Эколого-географические и генетические принципы изучения лесов / Ред. Зубарева Р.С., Фильрозе Е.М. Свердловск: УНЦ АН СССР, 1983. С. 69–74.
  33. Гордягин А.Я. Материалы для познания почв и растительности Западной Сибири. Казань, 1900–1901. 382 с. (Тр. Об-ва естествоиспытателей при Казан. ун-те. Т. 34. Вып. 3).
  34. Крашенинников И.М. Основные пути развития растительности Южного Урала в связи с палеогеографией Северной Евразии в плейстоцене и голоцене // Сов. ботаника. 1939. № 67. С. 67–99.
  35. Грибанов Л.Н. К истории степных боров Западной Сибири и Северного Казахстана // Ботан. журн. 1957. Т. 42. № 4. С. 556–570.
  36. Usoltsev V.A., Vanclay J.K. Stand biomass dynamics of pine plantations and natural forests on dry steppe in Kazakhstan // Scandinavian Journal of Forest Research. 1995. V. 10. № 1-4. P. 305–312. https://doi.org/10.1080/02827589509382897
  37. Stokes M.A., Smiley T.L. An introduction to tree-ring dating. Chiсago: The University of Chicago Press, 1968. 73 p.
  38. Rinn F. TSAP. Reference Manual. Version 3.0. Heidelberg, 1996. 263 p.
  39. Holmes R.L. Computer-assisted quality control in treering dating and measurement // Tree-Ring Bull. 1983. V. 43. № 3. P. 69–78.
  40. Cook E.R., Krusic P.J. Program ARSTAN: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Lamont-Doherty Earth Observatory, Columbia University, Palisades, N.Y., 2005.
  41. Harris I., Osborn T.J., Jones P., Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset // Sci. Data. 2020. V. 7. https://doi.org/10.1038/s41597-020-0453-323.
  42. Fritts H. Tree rings and climate. London; N.Y.; San Francisco: Academic Press, 1976. 567 p.
  43. Esper J., Schneider L., Smerdon J.E. et al. Signals and memory in tree-ring width and density data // Dendrochronologia. 2015. V. 35. P. 62–70. http://dx.doi.org/10.1016/j.dendro.2015.07.001
  44. Wilmking M., van der Maaten-Theunissen M., van der Maaten E. et al. Global assessment of relationships between climate and tree growth // Glob. Change Biol. 2020. V. 26. P. 3212–3220. https://doi.org/10.1111/gcb.15057
  45. Biondi F., Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies // Computers & Geosciences. 2004. V. 30. № 3. P. 303–311. https://doi.org/10.1016/j.cageo.2003.11.004
  46. Агафонов Л.И., Кукарских В.В. Изменения климата прошлого столетия и радиальный прирост сосны в степи Южного Урала // Экология. 2008. № 3. С. 173–180. https://elibrary.ru/item.asp?id=9976741 [Agafonov L.I., Kukarskih V.V. Climate changes in the past century and radial increment of pine in the Southern Ural Steppe // Russ. J. of Ecology. 2008. V. 39. №3. P. 160–167. doi: 10.1134/S1067413608030028]
  47. Борисов A.A. Климаты СССР. М.: Просвещение, 1959. 280 с.
  48. Гвоздецкий Н.А. Физико-географическое районирование СССР. М.: Изд-во МГУ, 1968. 578 с.
  49. Locosselli G.M., Cardim R.H., Ceccantini G. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment // Int. J. Biometeorol. 2016. V. 60. P. 639–649. https://doi.org/10.1007/s00484-015-1058-y
  50. Hartl C., Düthorn E., Tejedor E. et al. Micro-site conditions affect Fennoscandian forest growth // Dendrochronologia. 2021. V. 65. Art. 125787. https://doi.org/10.1016/j.dendro.2020.125787

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geographical location of dendrochronological test sites (1–8) in Northern Kazakhstan.

Download (269KB)
3. Fig. 2. Climate data for the studied test sites. Average values ​​for 1901–2019 (according to CRU TS 4.04): average annual temperature (a); average temperature of the growing season (b); annual precipitation (c); precipitation of the growing season (d).

Download (193KB)
4. Fig. 3. Deviations in air temperature during the year (a) and in May–September (b) and precipitation (c, d) at test sites in the period 1990–2019 relative to 1901–1930. Significant changes (p < 0.05) are marked with *. For the color coding of test sites, see Fig. 2.

Download (219KB)
5. Fig. 4. Measured generalized chronologies of TP 1–8: the black line corresponds to the average values ​​of radial increment in mm, the standard deviations are shown in gray.

Download (317KB)
6. Fig. 5. Factor analysis of tree-ring chronologies from test sites 1–8 using the principal component method.

Download (71KB)
7. Fig. 6. Results of cluster analysis of the chronologies of the studied test sites – diagram of Euclidean distances.

Download (59KB)
8. Fig. 7. Correlation coefficients between the generalized indexed chronologies of test sites and air temperature (a) and precipitation (b). The horizontal line is the significance level (p < 0.05). For the color coding of test sites, see Fig. 2.

Download (229KB)
9. Fig. 8. Analysis of the stability of the relationship between pine growth in the studied test sites for the period May–July (5, 6, 7, respectively) with air temperature (a), precipitation (b), and the Palmer drought severity index (c). Horizontal lines correspond to the significance level of p < 0.05. Color designations of the test sites correspond to Fig. 2.

Download (354KB)

Copyright (c) 2024 Russian Academy of Sciences