Indication of radioactive contamination of forest ecosystems in the zone of the east Ural radioactive trace using methods of quantitative wood anatomy
- Authors: Kukarskih V.V.1, Komarova A.V.1, Vakhrusheva A.D.1, Arzac A.2, Modorov M.V.1
-
Affiliations:
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
- Siberian Federal University
- Issue: No 3 (2024)
- Pages: 165-172
- Section: Articles
- URL: https://kazanmedjournal.ru/0367-0597/article/view/671472
- DOI: https://doi.org/10.31857/S0367059724030015
- EDN: https://elibrary.ru/BKGKKX
- ID: 671472
Cite item
Abstract
The anatomical structure of the annual rings of Scots pine, formed before and after the Kyshtym accident, is analyzed. In trees growing closer to the central axis of the East Ural radioactive trace (EURT), a decrease in the number of cells in the annual ring, as well as a decrease in the diameter of the lumens and the thickness of the cell walls, was noted. It is assumed that radiation-induced damage to the photo-assimilation apparatus of trees led to disturbances in physiological processes that were reflected in the anatomical structure of wood.
Full Text

About the authors
V. V. Kukarskih
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: mmodorov@gmail.com
Russian Federation, Ekaterinburg
A. V. Komarova
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: mmodorov@gmail.com
Russian Federation, Ekaterinburg
A. D. Vakhrusheva
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: mmodorov@gmail.com
Russian Federation, Ekaterinburg
A. Arzac
Siberian Federal University
Email: mmodorov@gmail.com
Russian Federation, Krasnoyarsk
M. V. Modorov
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: mmodorov@gmail.com
Russian Federation, Ekaterinburg
References
- Никипелов Б.В., Романов Г.Н., Булдаков Л.А. и др. Радиационная авария на Южном Урале в 1957 г. // Атомная энергия. 1990. Т. 67. № 2. С. 74–80.
- Тихомиров Ф.А., Романов Г.Н. Дозы облучения организмов в условиях радиоактивного загрязнения леса // Экологические последствия радиоактивного загрязнения на Южном Урале. М.: Наука, 1993. С. 13–20.
- Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры. M.: ИздАТ, 2001. 752 с.
- Molchanova I., Mikhailovskaya L., Antonov K. et al. Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace // Journal of Environmental Radioactivity. 2014. V. 138. P. 238–248. https://doi.org/10.1016/j.jenvrad.2014.09.004
- Pozolotina V.N., Shalaumova Y. V., Lebedev V.A. et al. Forests in the East Ural Radioactive Trace: structure, spatial distribution, and the 90Sr inventory 63 years after the Kyshtym accident // Environmental Monitoring and Assessment. 2023. V. 195. № 6. P. 1–13. https://doi.org/10.1007/S10661-023-11300-Y/FIGURES/4
- ICRP, 2008. Environmental protection - the concept and use of reference animals and plants. ICRP publication 108 // Annals of the ICRP. 2008. V. 38. № 4–6. P. 1–332. https://doi.org/10.1016/j.icrp.2007.10.003
- Kukarskih V.V., Modorov M.V., Devi N.M. et al. Radial growth of Pinus sylvestris in the East Ural Radioactive Trace (EURT): Climate and ionizing radiation // Science of the Total Environment. 2021. V. 781. Art. 146827. https://doi.org/10.1016/j.scitotenv.2021.146827
- Björklund J., Von Arx G., Nievergelt D. et al. Scientific merits and analytical challenges of tree-ring densitometry // Reviews of Geophysics. 2019. V. 57. № 4. P. 1224–1264. https://doi.org/10.1029/2019RG000642
- Björklund J., Seftigen K., Fonti P. et al. Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris // Dendrochronologia. 2020. V. 60. Art. 125673. https://doi.org/10.1016/J.DENDRO.2020.125673
- De Micco V., Carrer M., Rathgeber C.B.K. et al. From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes // IAWA Journal. 2019. V. 40. № 2. P. 155–182. https://doi.org/10.1163/22941932-40190246
- Edwards J., Anchukaitis K.J., Gunnarson B.E. et al. The origin of tree-ring reconstructed summer cooling in Northern Europe during the 18th century eruption of Laki // Paleoceanography and Paleoclimatology. 2022. V. 37. № 2. Art. e2021PA004386. https://doi.org/10.1029/2021PA004386
- Carrer M., Brunetti M., Castagneri D. The imprint of extreme climate events in century-long time series of wood anatomical traits in high-elevation conifers // Frontiers in Plant Science. 2016. V. 7. Art. 683. https://doi.org/10.3389/FPLS.2016.00683/BIBTEX
- Wimmer R. Wood anatomical features in tree-rings as indicators of environmental change // Dendrochronologia. 2002. V. 20. № 1–2. P. 21–36. https://doi.org/10.1078/1125-7865-00005
- Arbellay E., Jarvis I., Chavardès R.D. et al. Tree-ring proxies of larch bud moth defoliation: Latewood width and blue intensity are more precise than tree-ring width // Tree Physiology. 2018. V. 38. № 8. P. 1237–1245. https://doi.org/10.1093/treephys/tpy057
- Lopez-Saez J., Corona C., von Arx G. et al. Tree-ring anatomy of Pinus cembra trees opens new avenues for climate reconstructions in the European Alps // Science of the Total Environment. 2023. V. 855. Art. 158605. https://doi.org/10.1016/J.SCITOTENV.2022.158605
- Prendin A.L., Petit G., Carrer M. et al. New research perspectives from a novel approach to quantify tracheid wall thickness // Tree Physiology. 2017. V. 37. № 7. P. 976–983. https://doi.org/10.1093/TREEPHYS/TPX037
- Holmes R.L. Computer‐assisted quality control in tree‐ring dating and measurement // Tree-Ring Bulletin. 1983. V. 43. P. 69–78.
- Grissino-Mayer H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA // Tree-Ring Research. 2001. V. 57. № 2. P. 205–221.
- Rossi S., Anfodillo T., Menardi R. Trephor: A new tool for sampling microcores from tree stems // IAWA Journal. 2006. V. 27. № 1. P. 89–97. https://doi.org/10.1163/22941932-90000139
- Prislan P., Gričar J., Čufar K. Wood sample preparation for microscopic analysis [Electronic resource]. 2014. URL: http://streess-cost.eu/
- Denne M.P. Definition of latewood according to Mork // IAWA Journal. 1989. V. 10. № 1. P. 59–62.
- Mork E.D. Qualität des Fichtenholzes unter besonderer Rücksichtnahme auf Schleif- und Papierholz // Der Papier-Fabrikant. 1928. V. 48. P. 741–747.
- Arzac A., Tabakova M.A., Khotcinskaia K. et al. Linking tree growth and intra-annual density fluctuations to climate in suppressed and dominant Pinus sylvestris L. trees in the forest-steppe of Southern Siberia // Dendrochronologia. 2021. V. 67. Art. 125842. https://doi.org/10.1016/J.DENDRO.2021.125842
- Castagneri D., Prendin A.L., Peters R.L. et al. Long-term impacts of defoliator outbreaks on larch xylem structure and tree-ring biomass // Frontiers in Plant Science. 2020. V. 11. Art. 541137. https://doi.org/10.3389/FPLS.2020.01078/BIBTEX
- Filion L., Cournoyer L. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada // Canadian Journal of Forest Research. 1995. V. 25. № 8. P. 1263–1268. https://doi.org/10.1139/X95-139
- Павлов И.Н., Агеев А.А., Барабанова О.А. Формирование годичных колец у основных хвойных лесообразующих пород Сибири после дефолиации кроны Dendrolimus superans sibiricus Tschetv. // Хвойные бореальной зоны. 2009. V. XXVI. № 2. C. 161–172.
- Ваганов Е.А., Шашкин А.В. Рост и структура годичных колец хвойных. Новосибирск: Наука, 2000. 232 c.
- Modorov M., Seleznev A., Mikhailovskaya L. Heterogeneity of 90Sr radioactive contamination at the head part of the East Ural radioactive trace (EURT) // Journal of Environmental Radioactivity. 2017. V. 167. P. 117–126. https://doi.org/10.1016/J.JENVRAD.2016.11.019
- Mikhailovskaya L.N., Modorov M. V., Pozolotina V.N. et al. Heterogeneity of soil contamination by 90Sr and its absorption by herbaceous plants in the East Ural Radioactive Trace area // Science of the Total Environment. 2019. V. 651. P. 2345–2353. https://doi.org/10.1016/j.scitotenv.2018.10.119
- Orekhova N.A., Modorov M.V. East Urals Radioactive Trace: Dose-dependent functional-metabolic effects in the myocardium of the pygmy wood mouse (Apodemus uralensis) taking into account population size // Journal of Environmental Radioactivity. 2017. V. 175–176. P. 15–24. https://doi.org/10.1016/J.JENVRAD.2017.04.005
- Orekhova N.A., Modorov M. V., Davydova Y.A. Structural-functional modifications of the liver to chronic radioactive exposure in pygmy wood mouse (Apodemus uralensis) within the East-Urals Radioactive Trace // Journal of Environmental Radioactivity. 2019. V. 199–200. P. 25–38. https://doi.org/10.1016/J.JENVRAD.2019.01.002
- Skuterud L., Goltsova N.I., Næumann R. et al. Histological changes in Pinus sylvestris L. in the proximal-zone around the Chernobyl power plant // Science of the Total Environment. 1994. V. 157. № 11. P. 387–397. https://doi.org/10.1016/0048-9697(94)90602-5
- Netsvetov M., Prokopuk Y., Holiaka D. et al. Is there Chornobyl nuclear accident signature in Scots pine radial growth and its climate sensitivity? // Science of the Total Environment. 2023. V. 878. Art. 163132. https://doi.org/10.1016/J.SCITOTENV.2023.163132
- Tulik M. Cambial history of Scots pine trees (Pinus sylvestris) prior and after the Chernobyl accident as encoded in the xylem // Environmental and Experimental Botany. 2001. V. 46. № 1. P. 1–10. https://doi.org/10.1016/S0098-8472(01)00075-2
- Tulik M., Rusin A. Microfibril angle in wood of Scots pine trees (Pinus sylvestris) after irradiation from the Chernobyl nuclear reactor accident // Environmental Pollution. 2005. V. 134. № 2. P. 195–199. https://doi.org/10.1016/j.envpol.2004.08.009
Supplementary files
