Rational drug design targeting G-protein-coupled receptors: ligand search and screening (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in most physiological processes and serve as key pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on structure (Structure Based Drug Design, SBDD). SBDD utilizes information about the receptor– ligand complex to search for suitable compounds, expanding the chemical space of search without the need for experimental screening. In our review we include a description of Structural-base Virtual Screening (SBVS) of ligands to GPCRs and a description of methods for functional testing of selected potential drug compounds. We also discuss recent advances in the development of SBDD approaches applicable to GPCRs and highlight successful examples of their use.

Full Text

Restricted Access

About the authors

А. P. Luginina

Moscow Institute of Physics and Technology (NIU)

Author for correspondence.
Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

A. N. Khnykin

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

P. А. Khorn

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

О. V. Moiseeva

Moscow Institute of Physics and Technology (NIU); G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region; 142290, Pushchino, Moscow Region

N. A. Safronova

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

V. A. Pospelov

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

D. E. Dashevskii

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

A. S. Belousov

Moscow Institute of Physics and Technology (NIU)

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

I. V. Borshchevskiy

Moscow Institute of Physics and Technology (NIU); Joint Institute for Nuclear Research

Email: borshchevskiy.vi@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region; 141980, Dubna, Moscow Region

A. V. Mishin

Moscow Institute of Physics and Technology (NIU)

Email: mishinalexey@phystech.edu
Russian Federation, 141701, Dolgoprudny, Moscow Region

References

  1. Schöneberg, T., and Liebscher, I. (2021) Mutations in G protein-coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches, Pharmacol. Rev., 73, 89-119, https://doi.org/10.1124/pharmrev.120.000011.
  2. Sriram, K., and Insel, P. A. (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol., 93, 251-258, https://doi.org/10.1124/mol.117.111062.
  3. Kooistra, A. J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., Keserű, G. M., and Gloriam, D. E. (2021) GPCRdb in 2021: integrating GPCR sequence, structure and function, Nucleic Acids Res., 49, D335-D343, https://doi.org/10.1093/nar/gkaa1080.
  4. Hauser, A. S., Kooistra, A. J., Munk, C., Heydenreich, F. M., Veprintsev, D. B., Bouvier, M., Babu, M. M., and Gloriam, D. E. (2021) GPCR activation mechanisms across classes and macro/microscales, Nat. Struct. Mol. Biol., 28, 879-888, https://doi.org/10.1038/s41594-021-00674-7.
  5. Dorsam, R. T., and Gutkind, J. S. (2007) G-protein-coupled receptors and cancer, Nat. Rev. Cancer, 7, 79-94, https://doi.org/10.1038/nrc2069.
  6. Gurevich, V. V., and Gurevich, E. V. (2019) GPCR signaling regulation: the role of GRKs and ARRESTINS, Front. Pharmacol., 10, 125, https://doi.org/10.3389/fphar.2019.00125.
  7. Bousoik, E., and Montazeri Aliabadi, H. (2018) “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway, Front. Oncol., 8, 287, https://doi.org/10.3389/fonc.2018.00287.
  8. Hay, D. L., and Pioszak, A. A. (2016) Receptor activity-modifying proteins (RAMPs): new insights and roles, Annu. Rev. Pharmacol. Toxicol., 56, 469-487, https://doi.org/10.1146/annurev-pharmtox-010715-103120.
  9. Masuho, I., Balaji, S., Muntean, B. S., Skamangas, N. K., Chavali, S., Tesmer, J. J. G., Babu, M. M., and Martemyanov, K. A. (2020) A global Map of G protein signaling regulation by RGS proteins, Cell, 183, 503-521.e19, https://doi.org/ 10.1016/j.cell.2020.08.052.
  10. Wess, J., Oteng, A.-B., Rivera-Gonzalez, O., Gurevich, E. V., and Gurevich, V. V. (2023) β-arrestins: structure, function, physiology, and pharmacological perspectives, Pharmacol. Rev., 75, 854-884, https://doi.org/10.1124/ pharmrev.121.000302.
  11. Smith, J. S., Lefkowitz, R. J., and Rajagopal, S. (2018) Biased signalling: from simple switches to allosteric microprocessors, Nat. Rev. Drug Discov., 17, 243-260, https://doi.org/10.1038/nrd.2017.229.
  12. Kolb, P., Kenakin, T., Alexander, S. P. H., Bermudez, M., Bohn, L. M., Breinholt, C. S., Bouvier, M., Hill, S. J., Kostenis, E., Martemyanov, K. A., et al. (2022) Community guidelines for GPCR ligand bias: IUPHAR review 32, Br. J. Pharmacol., 179, 3651-3674, https://doi.org/10.1111/bph.15811.
  13. McGovern, S. L., and Shoichet, B. K. (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes, J. Med. Chem., 46, 2895-2907, https://doi.org/10.1021/jm0300330.
  14. Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking, J. Med. Chem., 55, 6582-6594, https://doi.org/10.1021/ jm300687e.
  15. Weiss, D. R., Bortolato, A., Tehan, B., and Mason, J. S. (2016) GPCR-bench: a benchmarking set and practitioners’ guide for G protein-coupled receptor docking, J. Chem. Inf. Model., 56, 642-651, https://doi.org/10.1021/acs.jcim.5b00660.
  16. Bender, B. J., Gahbauer, S., Luttens, A., Lyu, J., Webb, C. M., Stein, R. M., Fink, E. A., Balius, T. E., Carlsson, J., Irwin, J. J., and Shoichet, B. K. (2021) A practical guide to large-scale docking, Nat. Protoc., 16, 4799-4832, https:// doi.org/10.1038/s41596-021-00597-z.
  17. Walters, W. P. (2019) Virtual chemical libraries, J. Med. Chem., 62, 1116-1124, https://doi.org/10.1021/acs. jmedchem.8b01048.
  18. Gentile, F., Yaacoub, J. C., Gleave, J., Fernandez, M., Ton, A.-T., Ban, F., Stern, A., and Cherkasov, A. (2022) Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking, Nat. Protoc., 17, 672-697, https://doi.org/10.1038/s41596-021-00659-2.
  19. Fink, T., Bruggesser, H., and Reymond, J.-L. (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons, Angew. Chem. Int. Ed Engl., 44, 1504-1508, https://doi.org/10.1002/anie.200462457.
  20. Ruddigkeit, L., van Deursen, R., Blum, L. C., and Reymond, J.-L. (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, J. Chem. Inf. Model., 52, 2864-2875, https://doi.org/10.1021/ci300415d.
  21. Bühlmann, S., and Reymond, J.-L. (2020) ChEMBL-likeness score and database GDBChEMBL, Front Chem., 8, 46, https://doi.org/10.3389/fchem.2020.00046.
  22. Leach, A. R., and Hann, M. M. (2000) The in silico world of virtual libraries, Drug Discov. Today, 5, 326-336, https://doi.org/10.1016/s1359-6446(00)01516-6.
  23. Hartenfeller, M., Eberle, M., Meier, P., Nieto-Oberhuber, C., Altmann, K.-H., Schneider, G., Jacoby, E., and Renner, S. (2011) A collection of robust organic synthesis reactions for in silico molecule design, J. Chem. Inf. Model., 51, 3093-3098, https://doi.org/10.1021/ci200379p.
  24. Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., O’Meara, M. J., Che, T., Algaa, E., Tolmachova, K., Tolmachev, A. A., Shoichet, B. K., Roth, B. L., and Irwin , J. J. (2019) Ultra-large library docking for discovering new chemotypes, Nature, 566, 224-229, https://doi.org/10.1038/s41586-019-0917-9.
  25. Weininger, D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci., 28, 31-36, https://doi.org/10.1021/ci00057a005.
  26. Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Johansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A., and Zhavoronkov, A. (2020) Molecular Sets (MOSES): A Benchmarking platform for molecular generation models, Front. Pharmacol., 11, 565644, https://doi.org/10.3389/fphar.2020.565644.
  27. Arús-Pous, J., Blaschke, T., Ulander, S., Reymond, J.-L., Chen, H., and Engkvist, O. (2019) Exploring the GDB-13 chemical space using deep generative models, J. Cheminform., 11, 20, https://doi.org/10.1186/s13321-019-0341-z.
  28. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. (2018) Learning deep generative models of graphs, arXiv, https://doi.org/10.48550/arXiv.1803.03324.
  29. Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. (2019) Optimization of molecules via deep reinforcement learning, Sci. Rep., 9, 10752, https://doi.org/10.1038/s41598-020-66840-x.
  30. Segler, M. H. S., Kogej, T., Tyrchan, C., and Waller, M. P. (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks, ACS Cent Sci., 4, 120-131, https://doi.org/10.1021/acscentsci.7b00512.
  31. Sousa, T., Correia, J., Pereira, V., and Rocha, M. (2021) Generative deep learning for targeted compound design, J. Chem. Inf. Model., 61, 5343-5361, https://doi.org/10.1021/acs.jcim.0c01496.
  32. Warr, W. A., Nicklaus, M. C., Nicolaou, C. A., and Rarey, M. (2022) Exploration of ultralarge compound collections for drug discovery, J. Chem. Inf. Model., 62, 2021-2034, https://doi.org/10.1021/acs.jcim.2c00224.
  33. Sadybekov, A. V., and Katritch, V. (2023) Computational approaches streamlining drug discovery, Nature, 616, 673-685, https://doi.org/10.1038/s41586-023-05905-z.
  34. Bajusz, D., Rácz, A., and Héberger, K. (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 7, 20, https://doi.org/10.1186/s13321-015-0069-3.
  35. Koutsoukas, A., Paricharak, S., Galloway, W. R. J. D., Spring, D. R., Ijzerman, A. P., Glen, R. C., Marcus, D., and Bender, A. (2014) How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space, J. Chem. Inf. Model., 54, 230-242, https://doi.org/10.1021/ci400469u.
  36. Korn, M., Ehrt, C., Ruggiu, F., Gastreich, M., and Rarey, M. (2023) Navigating large chemical spaces in early-phase drug discovery, Curr. Opin. Struct. Biol., 80, 102578, https://doi.org/10.1016/j.sbi.2023.102578.
  37. Janin, J., and Wodak, S. (1978) Conformation of amino acid side-chains in proteins, J. Mol. Biol., 125, 357-386, https://doi.org/10.1016/0022-2836(78)90408-4.
  38. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982) A geometric approach to macromolecule-ligand interactions, J. Mol. Biol., 161, 269-288, https://doi.org/10.1016/0022-2836(82)90153-x.
  39. Miszta, P., Jakowiecki, J., Rutkowska, E., Turant, M., Latek, D., and Filipek, S. (2018) Approaches for differentiation and interconverting GPCR agonists and antagonists, Methods Mol. Biol., 1705, 265-296, https://doi.org/10.1007/978-1-4939-7465-8_12
  40. Lorber, D. M., and Shoichet, B. K. (1998) Flexible ligand docking using conformational ensembles, Protein Sci., 7, 938-950, https://doi.org/10.1002/pro.5560070411.
  41. Yunta, M. J. R. (2016) Docking and ligand binding affinity: uses and pitfalls, Am. J. Model. Optimization, 4, 74-114, https://doi.org/10.12691/ajmo-4-3-2.
  42. Halperin, I., Ma, B., Wolfson, H., and Nussinov, R. (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions, Proteins, 47, 409-443, https://doi.org/10.1002/prot.10115.
  43. Yadava, U. (2018) Search algorithms and scoring methods in protein-ligand docking, Int. J. Endocrinol. Metab., 6, https://doi.org/10.15406/emij.2018.06.00212.
  44. Liu, J., and Wang, R. (2015) Classification of current scoring functions, J. Chem. Inf. Model., 55, 475-482, https://doi.org/10.1021/ci500731a.
  45. Li, J., Fu, A., and Zhang, L. (2019) An overview of scoring functions used for protein-ligand interactions in molecular docking, Interdiscip. Sci., 11, 320-328, https://doi.org/10.1007/s12539-019-00327-w.
  46. Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., and Taranto, A. G. (2020) Structure-based virtual screening: from classical to artificial intelligence, Front Chem., 8, 343, https://doi.org/10.3389/fchem.2020.00343.
  47. Houston, D. R., and Walkinshaw, M. D. (2013) Consensus docking: improving the reliability of docking in a virtual screening context, J. Chem. Inf. Model., 53, 384-390, https://doi.org/10.1021/ci300399w.
  48. Aliebrahimi, S., Montasser Kouhsari, S., Ostad, S. N., Arab, S. S., and Karami, L. (2018) Identification of phytochemicals targeting c-Met kinase domain using consensus docking and molecular dynamics simulation studies, Cell Biochem. Biophys., 76, 135-145, https://doi.org/10.1007/s12013-017-0821-6.
  49. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 23, 3-25, https://doi.org/10.1016/s0169-409x(00)00129-0.
  50. Baell, J. B., and Nissink, J. W. M. (2018) Seven year itch: pan-assay interference compounds (PAINS) in 2017-utility and limitations, ACS Chem. Biol., 13, 36-44, https://doi.org/10.1021/acschembio.7b00903.
  51. Männel, B., Jaiteh, M., Zeifman, A., Randakova, A., Möller, D., Hübner, H., Gmeiner, P., and Carlsson, J. (2017) Structure-guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library, ACS Chem. Biol., 12, 2652-2661, https://doi.org/10.1021/acschembio.7b00493.
  52. Sadybekov, A. A., Brouillette, R. L., Marin, E., Sadybekov, A. V., Luginina, A., Gusach, A., Mishin, A., Besserer-Offroy, É., Longpré, J.-M., Borshchevskiy, V., et al. (2020) Structure-based virtual screening of ultra-large library yields potent antagonists for a lipid GPCR, Biomolecules, 10, https://doi.org/10.3390/biom10121634.
  53. Heine, P., Witt, G., Gilardi, A., Gribbon, P., Kummer, L., and Plückthun, A. (2019) High-throughput fluorescence polarization assay to identify ligands using purified G protein-coupled receptor, SLAS Discov., 24, 915-927, https://doi.org/10.1177/2472555219837344.
  54. Qin, S., Meng, M., Yang, D., Bai, W., Lu, Y., Peng, Y., Song, G., Wu, Y., Zhou, Q., Zhao, S., et al. (2018) High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening, Chem. Sci., 9, 3192-3199, https://doi.org/10.1039/c7sc04698g.
  55. Prudent, R., Annis, D. A., Dandliker, P. J., Ortholand, J.-Y., and Roche, D. (2021) Exploring new targets and chemical space with affinity selection-mass spectrometry, Nat Rev Chem., 5, 62-71, https://doi.org/10.1038/s41570-020-00229-2.
  56. Flanagan, C. A. (2016) GPCR-radioligand binding assays, Methods Cell Biol., 132, 191-215, https://doi.org/10.1016/bs.mcb.2015.11.004.
  57. Capelli, D., Parravicini, C., Pochetti, G., Montanari, R., Temporini, C., Rabuffetti, M., Trincavelli, M. L., Daniele, S., Fumagalli, M., Saporiti, S., et al. (2019) Surface plasmon resonance as a tool for ligand binding investigation of engineered GPR17 receptor, a G protein coupled receptor involved in myelination, Front. Chem., 7, 910, https://doi.org/10.3389/fchem.2019.00910.
  58. Locatelli-Hoops, S., Yeliseev, A. A., Gawrisch, K., and Gorshkova, I. (2013) Surface plasmon resonance applied to G protein-coupled receptors, Biomed. Spectrosc. Imaging, 2, 155-181, https://doi.org/10.3233/BSI-130045.
  59. Seidel, S. A. I., Dijkman, P. M., Lea, W. A., van den Bogaart, G., Jerabek-Willemsen, M., Lazic, A., Joseph, J. S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F. A., Ladbury, J. E., Schreiber, G., Watts, A., Braun, D., and Duhr, S. (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions, Methods, 59, 301-315, https://doi.org/10.1016/j.ymeth.2012.12.005.
  60. Rascol, E., Dufourquet, A., Baccouch, R., Soule, P., and Alves, I. (2022) An original approach to measure ligand/receptor binding affinity in non-purified samples, Sci. Rep., 12, 5400, https://doi.org/10.1038/s41598-022-09217-6.
  61. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T., and Wüthrich, K. (2019) GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures, Nat. Rev. Drug Discov., 18, 59-82, https://doi.org/10.1038/nrd.2018.180.
  62. Banères, J.-L., Botzanowski, T., Boutin, J. A., Calamini, B., Castel, J., Catoire, L. J., Cianférani, S., Demesmay, C., Ferguson, G., Ferry, G., Kniazeff, J., Krimm, I., Langer, T., Lebon, G., Ley, M., Nyerges, M., Schwob, M., Venien-Bryan, C., Wagner, R., Zeder-Lutz, G., and Zilian-Stohrer, C. (2023) Biophysical dissection of isolated GPCRs: the adenosine A2A receptor under the bistouries, Receptors, 2, 47-92, https://doi.org/10.3390/receptors2010004.
  63. Takahashi, M. (2022) Nucleic acid aptamers emerging as modulators of G-protein-coupled receptors: challenge to difficult cell surface proteins, Cells, 11, https://doi.org/10.3390/cells11111825.
  64. Singh, J. K., Maniyar, R. C., and Shirsath, V. S. (2012) Development of time-resolved fluorescent based [EU]-GTP binding assay for selection of human Histamine 3 receptor antagonists/inverse agonist: a potential target for Alzheimer’s treatment, Ann. Neurosci., 19, 71-75, https://doi.org/10.5214/ans.0972.7531.12190205.
  65. Hilger, D., Kumar, K. K., Hu, H., Pedersen, M. F., O’Brien, E. S., Giehm, L., Jennings, C., Eskici, G., Inoue, A., Lerch, M., et al. (2020) Structural insights into differences in G protein activation by family A and family B GPCRs, Science, 369, https://doi.org/10.1126/science.aba3373.
  66. Inoue, A., Raimondi, F., Kadji, F. M. N., Singh, G., Kishi, T., Uwamizu, A., Ono, Y., Shinjo, Y., Ishida, S., Arang, N., Kawakami, K., Gutkind, J. S., Aoki, J., and Russell, R. B. (2019) Illuminating G-protein-coupling selectivity of GPCRs, Cell, 177, 1933-1947.e25, https://doi.org/10.1016/j.cell.2019.04.044.
  67. Van Gastel, J., Hendrickx, J. O., Leysen, H., Santos-Otte, P., Luttrell, L. M., Martin, B., and Maudsley, S. (2018) β-arrestin based receptor signaling paradigms: potential therapeutic targets for complex age-related disorders, Front. Pharmacol., 9, 1369, https://doi.org/10.3389/fphar.2018.01369.
  68. Jean-Charles, P.-Y., Kaur, S., and Shenoy, S. K. (2017) G protein-coupled receptor signaling through β-arrestin-dependent mechanisms, J. Cardiovasc. Pharmacol., 70, 142-158, https://doi.org/10.1097/FJC.0000000000000482.
  69. Bradley, J., and McLoughlin, D. (2009) Use of the DiscoveRx Hit hunter cAMPII assay for direct measurement of cAMP in Gs and Gi GPCRs, Methods Mol. Biol., 552, 171-179, https://doi.org/10.1007/978-1-60327-317-6_12.
  70. Yasgar, A., Jadhav, A., Simeonov, A., and Coussens, N. P. (2016) AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions, Methods Mol. Biol., 1439, 77-98, https://doi.org/10.1007/978-1-4939-3673-1_5.
  71. Kool, J., van Marle, A., Hulscher, S., Selman, M., van Iperen, D. J., van Altena, K., Gillard, M., Bakker, R. A., Irth, H., Leurs, R., et al. (2007) A flow-through fluorescence polarization detection system for measuring GPCR-mediated modulation of cAMP production, J. Biomol. Screen., 12, 1074-1083, https://doi.org/10.1177/1087057107308881.
  72. Kumar, B. A., Kumari, P., Sona, C., and Yadav, P. N. (2017) GloSensor assay for discovery of GPCR-selective ligands, Methods Cell Biol., 142, 27-50, https://doi.org/10.1016/bs.mcb.2017.07.012.
  73. Robichaux, W. G., 3rd and Cheng, X. (2018) Intracellular cAMP sensor EPAC: physiology, pathophysiology, and therapeutics development, Physiol. Rev., 98, 919-1053, https://doi.org/10.1152/physrev.00025.2017.
  74. Lyapina, E., Marin, E., Gusach, A., Orekhov, P., Gerasimov, A., Luginina, A., Vakhrameev, D., Ergasheva, M., Kovaleva, M., Khusainov, G., Khorn, P., Shevtsov, M., Kovalev, K., Bukhdruker, S., Okhrimenko, I., Popov, P., Hu, H., Weierstall, U., Liu, W., Cho, Y., Gushchin, I., Rogachev, A., et al. (2022) Structural basis for receptor selectivity and inverse agonism in S1P5 receptors, Nat. Commun., 13, 4736, https://doi.org/10.1038/s41467-022-32447-1.
  75. Krasavin, M., Lukin, A., Sukhanov, I., Gerasimov, A. S., Kuvarzin, S., Efimova, E. V., Dorofeikova, M., Nichugovskaya, A., Matveev, A., Onokhin, K., Zakharov, K., Gureev, M., and Gainetdinov, R. R. (2022) Discovery of trace amine associated receptor 1 (TAAR1) agonist 2-(5-(4’-chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the treatment of psychotic disorders, Biomolecules, 12, https://doi.org/10.3390/biom12111650.
  76. Paramonov, V. M., Mamaeva, V., Sahlgren, C., and Rivero-Müller, A. (2015) Genetically-encoded tools for cAMP probing and modulation in living systems, Front. Pharmacol., 6, 196, https://doi.org/10.3389/fphar.2015.00196.
  77. Chen, Y., Xu, Z., Wu, D., Li, J., Song, C., Lu, W., and Huang, J. (2015) Luciferase reporter gene assay on human 5-HT receptor: which response element should be chosen? Sci. Rep., 5, 8060, https://doi.org/10.1038/srep08060.
  78. Garbison, K. E., Heinz, B. A., and Lajiness, M. E. (2012) IP-3/IP-1 Assays, Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  79. Degorce, F., Card, A., Soh, S., Trinquet, E., Knapik, G. P., and Xie, B. (2009) HTRF: A technology tailored for drug discovery – a review of theoretical aspects and recent applications, Curr. Chem. Genomics, 3, 22-32, https://doi.org/ 10.2174/1875397300903010022.
  80. Luginina, A., Gusach, A., Marin, E., Mishin, A., Brouillette, R., Popov, P., Shiriaeva, A., Besserer-Offroy, É., Longpré, J.-M., Lyapina, E., et al. (2019) Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs, Sci. Adv., 5, eaax2518, https://doi.org/10.1126/sciadv.aax2518.
  81. Gusach, A., Luginina, A., Marin, E., Brouillette, R. L., Besserer-Offroy, É., Longpré, J.-M., Ishchenko, A., Popov, P., Patel, N., Fujimoto, T., et al. (2019) Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors, Nat. Commun., 10, 5573, https://doi.org/10.1038/s41467-019-13348-2.
  82. Caers, J., Peymen, K., Suetens, N., Temmerman, L., Janssen, T., Schoofs, L., and Beets, I. (2014) Characterization of G protein-coupled receptors by a fluorescence-based calcium mobilization assay, J. Vis. Exp., e51516, https:// doi.org/10.3791/51516.
  83. Cheng, Z., Garvin, D., Paguio, A., Stecha, P., Wood, K., and Fan, F. (2010) Luciferase reporter assay system for deciphering GPCR pathways, Curr. Chem. Genomics, 4, 84-91, https://doi.org/10.2174/1875397301004010084.
  84. Kaufmann, J., Blum, N. K., Nagel, F., Schuler, A., Drube, J., Degenhart, C., Engel, J., Eickhoff, J. E., Dasgupta, P., Fritzwanker, S., Guastadisegni, M., Schulte, C., Miess-Tanneberg, E., Maric, H. M., Spetea, M., Kliewer, A., Baumann, M., Klebl, B., et al. (2022) A bead-based GPCR phosphorylation immunoassay for high-throughput ligand profiling and GRK inhibitor screening, Commun. Biol., 5, 1206, https://doi.org/10.1038/s42003-022-04135-9.
  85. Wang, T., Li, Z., Cvijic, M. E., Krause, C., Zhang, L., and Sum, C. S. (2017) Measurement of β-Arrestin Recruitment for GPCR Targets, Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  86. Oakley, R. H., Hudson, C. C., Cruickshank, R. D., Meyers, D. M., Payne, R. E., Jr., Rhem, S. M., and Loomis, C. R. (2002) The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors, Assay Drug Dev. Technol., 1, 21-30, https://doi.org/10.1089/154065802761001275.
  87. Donthamsetti, P., Quejada, J. R., Javitch, J. A., Gurevich, V. V., and Lambert, N. A. (2015) Using bioluminescence resonance energy transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors, Curr. Protoc. Pharmacol., 70, 2.14.1-2.14.14, https://doi.org/10.1002/0471141755.ph0214s70.
  88. Dogra, S., Sona, C., Kumar, A., and Yadav, P. N. (2016) Tango assay for ligand-induced GPCR-β-arrestin2 interaction: application in drug discovery, Methods Cell Biol., 132, 233-254, https://doi.org/10.1016/bs.mcb.2015.11.001.
  89. Zhao, X., Jones, A., Olson, K. R., Peng, K., Wehrman, T., Park, A., Mallari, R., Nebalasca, D., Young, S. W., and Xiao, S.-H. (2008) A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors, J. Biomol. Screen., 13, 737-747, https://doi.org/ 10.1177/1087057108321531.
  90. Olsen, R. H. J., DiBerto, J. F., English, J. G., Glaudin, A. M., Krumm, B. E., Slocum, S. T., Che, T., Gavin, A. C., McCorvy, J. D., Roth, B. L., et al. (2020) TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome, Nat. Chem. Biol., 16, 841-849, https://doi.org/10.1038/s41589-020-0535-8.
  91. Faron-Górecka, A., Szlachta, M., Kolasa, M., Solich, J., Górecki, A., Kuśmider, M., Żurawek, D., and Dziedzicka-Wasylewska, M. (2019) Understanding GPCR dimerization, Methods Cell Biol., 149, 155-178, https://doi.org/10.1016/bs.mcb.2018.08.005.
  92. Kufareva, I., Stephens, B., Gilliland, C. T., Wu, B., Fenalti, G., Hamel, D., Stevens, R. C., Abagyan, R., and Handel, T. M. (2013) A novel approach to quantify G-protein-coupled receptor dimerization equilibrium using bioluminescence resonance energy transfer, Methods Mol. Biol., 1013, 93-127, https://doi.org/10.1007/978-1-62703-426-5_7.
  93. Erdogan, E., Altunbas, I., Kabaoglu, N., and Yanikomeroglu, H. (2020) A cognitive radio enabled RF/FSO communication model for aerial relay networks: possible configurations and opportunities, arXiv, https://doi.org/10.1109/OJVT.2020.3045486.
  94. Guo, S., Zhao, T., Yun, Y., and Xie, X. (2022) Recent progress in assays for GPCR drug discovery, Am. J. Physiol. Cell Physiol., 323, C583-C594, https://doi.org/10.1152/ajpcell.00464.2021.
  95. Werry, T. D., Wilkinson, G. F., and Willars, G. B. (2003) Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+, Biochem. J., 374, 281-296, https://doi.org/10.1042/BJ20030312.
  96. Horioka, M., Ceraudo, E., Lorenzen, E., Sakmar, T. P., and Huber, T. (2021) Purinergic receptors crosstalk with CCR5 to amplify Ca2+ signaling, Cell. Mol. Neurobiol., 41, 1085-1101, https://doi.org/10.1007/s10571-020-01002-1.
  97. Voisin, T., Perner, C., Messou, M.-A., Shiers, S., Ualiyeva, S., Kanaoka, Y., Price, T. J., Sokol, C. L., Bankova, L. G., Austen, K. F., and Chiu, I. M. (2021) The CysLT2R receptor mediates leukotriene C4-driven acute and chronic itch, Proc. Natl. Acad. Sci. USA, 118, https://doi.org/10.1073/pnas.2022087118.
  98. Pilar Pedro, M., Lund, K., Kang, S. W. S., Chen, T., Stuelten, C. H., Porat-Shliom, N., and Iglesias-Bartolome, R. (2023) A GPCR screening in human keratinocytes identifies that the metabolite receptor HCAR3 controls epithelial proliferation, migration, and cellular respiration, bioRxiv, https://doi.org/10.1101/2023.05.30.542853.
  99. Cvetkovic, C., Patel, R., Shetty, A., Hogan, M. K., Anderson, M., Basu, N., Aghlara-Fotovat, S., Ramesh, S., Sardar, D., Veiseh, O., et al. (2022) Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids, J. Cell Biol., 221, https://doi.org/10.1083/jcb.202107135.
  100. Takahashi, T. (2019) Organoids for drug discovery and personalized medicine, Annu. Rev. Pharmacol. Toxicol., 59, 447-462, https://doi.org/10.1146/annurev-pharmtox-010818-021108.
  101. Jacobson, K. A. (2015) New paradigms in GPCR drug discovery, Biochem. Pharmacol., 98, 541-555, https://doi.org/ 10.1016/j.bcp.2015.08.085.
  102. Doré, A. S., Robertson, N., Errey, J. C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K., Congreve, M., Magnani, F., et al. (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine, Structure, 19, 1283-1293, https://doi.org/10.1016/j.str.2011.06.014.
  103. Congreve, M., de Graaf, C., Swain, N. A., and Tate, C. G. (2020) Impact of GPCR structures on drug discovery, Cell, 181, 81-91, https://doi.org/10.1016/j.cell.2020.03.003.
  104. Borodovsky, A., Barbon, C. M., Wang, Y., Ye, M., Prickett, L., Chandra, D., Shaw, J., Deng, N., Sachsenmeier, K., Clarke, J. D., et al. (2020) Small molecule AZD4635 inhibitor of A2AR signaling rescues immune cell function including CD103+ dendritic cells enhancing anti-tumor immunity, J. Immunother. Cancer, 8, e000417, https://doi.org/10.1136/jitc-2019-000417.
  105. Johnson, C. R., Kangas, B. D., Jutkiewicz, E. M., Bergman, J., and Coop, A. (2022) Drug design targeting the muscarinic receptors and the implications in central nervous system disorders, Biomedicines, 10, 398, https:// doi.org/10.3390/biomedicines10020398.
  106. Saxena, A. R., Gorman, D. N., Esquejo, R. M., Bergman, A., Chidsey, K., Buckeridge, C., Griffith, D. A., and Kim, A. M. (2021) Danuglipron (PF-06882961) in type 2 diabetes: a randomized, placebo-controlled, multiple ascending-dose phase 1 trial, Nat. Med., 27, 1079-1087, https://doi.org/10.1038/s41591-021-01391-w.
  107. Saxena, A. R., Frias, J. P., Brown, L. S., Gorman, D. N., Vasas, S., Tsamandouras, N., and Birnbaum, M. J. (2023) Efficacy and safety of oral small molecule glucagon-like peptide 1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: a randomized clinical trial, JAMA Netw. Open, 6, e2314493, https://doi.org/10.1001/jamanetworkopen.2023.14493.
  108. Kim, H., Lim, T., Ha, G. E., Lee, J.-Y., Kim, J.-W., Chang, N., Kim, S. H., Kim, K. H., Lee, J., Cho, Y., et al. (2023) Structure-based drug discovery of a corticotropin-releasing hormone receptor 1 antagonist using an X-ray free-electron laser, Exp. Mol. Med., 55, 2039-2050, https://doi.org/10.1038/s12276-023-01082-1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The general principle of GPCR signal transmission: a selective ligand, approaching from the extracellular side, activates a receptor, which, undergoing conformational changes, activates a G-protein heterotrimer consisting of α-, β- and γ-subunits. The activated receptor, which interacts with the heterotrimer as a whole, initiates its dissociation, catalyzing the exchange of GDP for GTP in the nucleotide center of the Ga subunit, which determines the further cascade of reactions. For example, Ga12/13 starts the Rac/Rho path of small GTPases; Gaas stimulate, and Gai/o inhibit adenylate cyclase, which catalyzes the conversion of adenosine triphosphate (ATP) into cyclic adenosine monophosphate (cAMP); Gaq stimulates phospholipase C-β (PLC-β), cleaving off phosphatidylinositol biphosphate (its isoform PI-3,5-P2) inositol triphosphate (IP3), an increase in the concentration of which leads to release of intracellular calcium. Secondary messengers include an appropriate cellular response. Gßy subunits also trigger a number of signaling pathways, for example, by interacting with ion channels, lipid kinases (phosphoinositide-3-kinase-γ, PI3Ky) and phospholipases (PLC-β). With prolonged activation, the receptor can be phosphorylated, for example, by GPCR kinase (GRK), which leads to binding to the arrestin protein (Arr), which terminates the G-protein-associated signaling pathway [5]

Download (174KB)
3. Fig. 2. Methods for analyzing intracellular GPCR signaling used for screening compound libraries. The sun indicates a detectable signal of chemiluminescence, fluorescence caused by the interaction of molecules with sensors, the assembly of a fluorescent protein or resonant energy transfer occurring when macromolecules approach

Download (167KB)

Copyright (c) 2024 Russian Academy of Sciences