Аллелопатические свойства цианобактерий (обзор)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящий обзор посвящен метаболитам цианобактерий, обладающим аллелопатической активностью. Аллелопатические свойства цианобактерий стали предметом изучения сравнительно недавно, и многие аспекты данной проблемы пока остаются дискуссионными. Химическая структура продуцируемых цианобактериями аллелохимикатов разнообразна (алкалоиды, фенольные соединения, органические кислоты, циклические пептиды, жирные кислоты и др.), а спектр биологического действия чрезвычайно широк и охватывает почти всех водных обитателей. Аллелопатию считают стратегией регуляции сообществ фитопланктона, помогающей поддерживать разнообразие видов в водных экосистемах. Высокую аллелопатическую активность по отношению к водным организмам проявляют цианотоксины, в том числе микроцистины. Помимо влияния аллелохимикатов цианобактерий на представителей фитопланктона, они проявляют противогрибковую, антибактериальную, противовирусную, антиоксидантную, противовоспалительную и противоопухолевую активность, что указывает на потенциал их применения в сельском хозяйстве и фармакологии. В работе рассматривается экологическая роль аллелохимикатов, механизмы их действия и влияние факторов окружающей среды на их образование.

Полный текст

Доступ закрыт

Об авторах

Ю. М. Поляк

Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Автор, ответственный за переписку.
Email: yuliapolyak@mail.ru
Россия, Санкт-Петербург

В. И. Сухаревич

Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Email: yuliapolyak@mail.ru
Россия, Санкт-Петербург

Список литературы

  1. Андреева Н.А., Мельников В.В., Снарская Д.Д. 2020. Роль цианобактерий в морских экосистемах // Биол. моря. T. 46. № 3. С. 16. https://doi.org/10.31857/S013434752003002X
  2. Гольдин Е.Б. 2013. Биологическая активность микроводорослей и ее значение в межвидовых взаимоотношениях // Экосистемы. № 9(28). C. 49.
  3. Кондратьев М., Карпова Г., Ларикова Ю. 2014. Взаимосвязи и взаимоотношения в растительных сообществах. М.: РГАУ–МСХА.
  4. Немцева Н.В., Мамедова Э.И., Немцева Е.К. 2019. Противоопухолевая активность некоторых метаболитов цианобактерий и перспективы их практического использования // Бюлл. Оренбург. науч. центра УрО РАН. № 2. С. 1. https://doi.org/10.24411/2304-9081-2019-12002
  5. Поляк Ю.М., Поляк М.С. 2022. Роль цианотоксинов в патологии человека и животных (обзор) // Журн. микробиол. эпидемиол. иммунобиол. Т. 99(2). С. 231. https://doi.org/10.36233/0372-9311-230
  6. Поляк Ю.М., Сухаревич В.И. 2017. Токсигенные цианобактерии: распространение, регуляция синтеза токсинов, способы их деструкции // Вода: химия и экология. № 11–12. С. 125.
  7. Поляк Ю.М., Сухаревич В.И. 2019. Аллелопатические взаимоотношения растений и микроорганизмов в почвенных экосистемах // Успехи соврем. биол. Т. 2. С. 147. https://doi.org/10.1134/S0042132419020066
  8. Поляк Ю.М., Сухаревич В.И., Поляк М.С. 2022. Цианобактерии и их метаболиты. СПб.: Нестор-История.
  9. Поляк Ю.М., Сухаревич В.И. 2023. Проблемы и перспективы использования цианобактерий (обзор) // Биология внутр. вод. № 1. С. 44. https://doi.org/10.31857/S032096522301014X
  10. Cухаревич В.И., Поляк Ю.М. 2020. Глобальное распространение цианобактерий: причины и последствия (обзор) // Биология внутр. вод. № 6. C. 562. https://doi.org/10.31857/S0320965220060170
  11. Уиттекер Р. 1980. Сообщества и экосистемы. М.: Мир.
  12. Babica P., Blaha L., Marsalek B. 2006. Exploring the natural role of microcystins – a review of effects on photoautotrophic organisms // J. Phycol. V. 42. P. 9. https://doi.org/10.1111/j.1529-8817.2006.00176.x
  13. Bacellar Mendes L.B., Vermelho A.B. 2013. Allelopathy as a potential strategy to improve microalgae cultivation // Biotechnol. Biofuels. V. 6(1). P. 152. https://doi.org/10.1186/1754-6834-6-152
  14. Becher P.G., Beuchat J., Gademann K., Jüttner F. 2005. Nostocarboline: Isolation and Synthesis of a New Cholinesterase Inhibitor from Nostoc 78-12A // J. Nat. Prod. V. 68. P. 1793. https://doi.org/10.1021/np050312l
  15. Berry J.P., Gantar M., Perez M.H. et al. 2008. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides // Mar. Drugs. V. 6(2). P. 117. https://doi.org/10.3390/md6020117
  16. Briand E., Bormans M., Gugger M. et al. 2016. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions // Environ. Microbiol. V. 18(2). P. 384. https://doi.org/10.1111/1462-2920.12904
  17. Brilisauer K., Rapp J., Rath P. et al. 2019. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms // Nat. Commun. V. 10. P. 545. https://doi.org/10.1038/s41467-019-08476-8
  18. Casanova L.M., Macrae A., de Souza J.E. et al. 2023. The potential of allelochemicals from microalgae for biopesticides // Plants. V. 12. P. 1896. https://doi.org/10.3390/plants12091896
  19. Chaïb S., Pistevos J.C.A., Bertrand C., Bonnard I. 2021. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research // Algal Res. V. 54. P. 102213. https://doi.org/10.1016/j.algal.2021.102213
  20. Do Amaral S.C., Xavier L.P., Vasconcelos V., Santos A.V. 2023. Cyanobacteria: A promising source of antifungal metabolites // Mar. Drugs. V. 21. P. 359. https://doi.org/10.3390/md21060359
  21. Etchegaray A., Rabello E., Dieckmann R. et al. 2004. Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19 // J. Appl. Phycol. V. 16. P. 237. https://doi.org/10.1023/B:JAPH.0000048509.77816.5e
  22. Gonçalves A.L. 2021. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles // Appl. Sci. V. 11. P. 871. https://doi.org/10.3390/app11020871
  23. Granéli E., Hansen P.J. 2006. Allelopathy in harmful algae: A mechanism to compete for resources? // Ecol. Harmful Algae. Berlin: Springer. V. 189. https://doi.org/10.1007/978-3-540-32210-8_15
  24. Griffiths D.J., Saker M.L. 2003. The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin // Environ. Toxicol. V. 18. P. 78. https://doi.org/10.1002/tox.10103
  25. Gromov B.V., Vepritskiy A.A., Titova N.N. et al. 1991. Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium) // J. Appl. Phycol. V. 3. P. 55. https://doi.org/10.1007/BF00003919
  26. Gross E.M., Wolk C.P., Jüttner F. 1991. Fisherellin, a new allelochemical from the freshwater cyanobacterium Fisherella muscicola // J. Phycol. V. 27. P. 686. https://doi.org/10.1111/j.0022-3646.1991.00686.x
  27. Gross E.M. 2003. Allelopathy of aquatic autotrophs // Crit. Rev. Plant Sci. V. 22(3–4). P. 313. https://doi.org/10.1080/713610859
  28. Hillwig M.L., Zhu Q., Liu X. 2014. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua // ACS Chem. Biol. V. 9. P. 372. https://doi.org/10.1021/cb400681n
  29. Hirata K., Yoshitomi S., Dwi S. et al. 2004. Generation of reactive oxygen species undergoing redox cycle of nostoc in A: a cytotoxic violet pigment produced by freshwater cyanobacterium Nostoc spongiaeforme // J. Biotechnol. V. 110. P. 29. https://doi.org/10.1016/j.jbiotec.2003.12.014
  30. Hu Z.Q., Liu Y.D., Li D.H. 2004. Physiological and biochemical analyses of Microcystin-RR toxicity to the cyanobacterium Synechococcus elongates // Environ. Toxicol. V. 19. P. 571. https://doi.org/10.1002/tox.20064
  31. Kaebernick M., Neilan B.A. 2001. Ecological and molecular investigations of cyanotoxin production // FEMS Microbiol. Ecol. V. 35. P. 1. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x
  32. Keating K.I. 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake // Science. V. 196(4292). P. 885. https://doi.org/10.1126/science.196.4292.885
  33. Konarzewska Z., Śliwińska-Wilczewska S., Felpeto A.B. et al. 2020. Assessment of the allelochemical activity and biochemical profile of different phenotypes of picocyanobacteria from the genus Synechococcus // Mar. Drugs. V. 18(4). P. 179. https://doi.org/10.3390/md18040179
  34. Inderjit. 1996. Plant phenolics in allelopathy // Bot. Rev. V. 62(2). P. 186.
  35. Latif S., Chiapusio G., Weston L.A. 2017. Chapter two – Allelopathy and the role of allelochemicals in plant defense // Adv. Bot. Res. V. 82. P. 19. https://doi.org/10.1016/bs.abr.2016.12.001
  36. Leão P.N., Vasconcelos M.T., Vasconcelos V.M. 2009. Allelopathy in freshwater cyanobacteria // Crit. Rev. Microbiol. V. 35(4). P. 271. https://doi.org/10.3109/10408410902823705
  37. Leão P.N., Pereira A.R., Liu W.T. et al. 2010 Synergistic allelochemicals from a freshwater cyanobacterium // Proc. Natl. Acad. Sci. USA. V. 107(25). P. 11183. https://doi.org/10.1073/pnas.091434310
  38. Leflaive J., Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins // Freshwаter Biol. V. 52. P. 199. https://doi.org/10.1111/j.1365-2427.2006.01689.x
  39. Legrand C., Rengefors K., Fistarol G.O., Graneli E. 2003. Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects // Phycologia. V. 42(4). P. 406. https://doi.org/10.2216/i0031-8884-42-4-406.1
  40. Mason C.P., Edwards K.R., Carlson R.E. et al. 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni // Science. V. 215. P. 400. https://doi.org/10.1126/science.6800032
  41. Molish H. 1937. Der Einfluss einer Pflanze auf die andere: Allelopathie. Jena: Fisher Verlag. (in German).
  42. Moreira C., Vasconcelos V., Antunes A. 2022. Cyanobacterial blooms: Current knowledge and new perspectives // Earth. V. 3. P. 127. https://doi.org/10.3390/earth3010010
  43. Nagle D.G., Paul V.J. 1999. Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds // J. Phycol. V. 35(6). P. 1412. https://doi.org/10.1046/j.1529-8817.1999.3561412.x
  44. Omidi A., Esterhuizen-Londt M., Pflugmacher S. 2019. Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases // Environ. Int. V. 131. P. 105052. https://doi.org/10.1016/j.envint.2019.105052
  45. Pedrol N., González L., Reigosa M. 2006. Allelopathy and abiotic stress // Allelopathy. Dordrecht: Springer. https://doi.org/10.1007/1-4020-4280-9_9
  46. Pflugmacher S. 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems // Environ. Toxicol. V. 17. P. 407. https://doi.org/10.1002/tox.10071
  47. Ray S., Bagchi S.N. 2001. Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens // New Phytol. V. 149. P. 455. https://doi.org/10.1046/j.1469-8137.2001.00061.x
  48. Reigosa M.J., Sanchez-Moreiras A., Gonzales L. 1999. Ecophysiological approach in allelopathy // Critical Rev. Plant Sci. V. 18. P. 577. https://doi.org/10.1080/07352689991309405
  49. Rice E.L. 1974. Allelopathy. N.Y., London: Acad. Press.
  50. Righini H., Francioso O., Martel Quintana A., Roberti R. 2022. Cyanobacteria: a natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth // Horticulturae. V. 8. P. 58. https://doi.org/10.3390/horticulturae8010058
  51. Roy S. 2009. Do phytoplankton communities evolve through a self-regulatory abundance–diversity relationship? // BioSystems. V. 95. P. 160. https://doi.org/10.1016/j.biosystems.2008.10.001
  52. Rzymski P., Poniedziałek B., Kokociński M. et al. 2014. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa // Harmful Algae. V. 35. P. 1. https://doi.org/10.1016/j.hal.2014.03.002
  53. Sivonen K., Leikoski N., Fewer D.P., Jokela J. 2010. Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria // Appl. Microbiol. Biotechnol. V. 86. P. 1213. https://doi.org/10.1007/s00253-010-2482-x
  54. Śliwińska-Wilczewska S., Wiśniewska K.A., Budzałek G., Konarzewska Z. 2021. Phenomenon of allelopathy in cyanobacteria // Ecophysiology and biochemistry of cyanobacteria. Singapore: Springer. https://doi.org/10.1007/978-981-16-4873-1_11
  55. Srivastava A., Jütmer F., Strasser R.J. 1998. Action of the ailelochemical, fischereilin A on photosystem II // Biochim. Biophys. Acta. V. 1364. P. 326. https://doi.org/10.1016/S0005-2728(98)00014-0
  56. Sukenik A., Eskhol R., Livne A. et al. 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel Allelopathic mechanism // Limnol. Oceanogr. V. 47(6). P. 1656. https://doi.org/10.4319/lo.2002.47.6.1656
  57. Suikkanen S., Fistarol G.O., Granéli E. 2005. Effects of cyanobacterial allelochemicals on a natural plankton community // Mar. Ecol. Prog. Ser. V. 287. P. 1. https://doi.org/10.3354/meps287001
  58. Teneva I., Velikova V., Belkinova D. et al. 2023. Allelopathic potential of the cyanotoxins microcystin-LR and cylindrospermopsin on green algae // Plants. V. 12. P. 1403. https://doi.org/10.3390/plants12061403
  59. Tillmann U., Alpermann T., John U., Cembella A. 2008. Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists // Harmful Algae. V. 7. P. 52. https://doi.org/10.1016/j.hal.2007.05.009
  60. Valdor R., Aboal M. 2007. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria // Toxicon. V. 49. P. 769. https://doi.org/10.1016/j.toxicon.2006.11.025
  61. Vardi A., Schatz D., Beeri K. et al. 2002. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake // Curr. Biol. V. 12. P. 1767. https://doi.org/10.1016/S0960-9822(02)01217-4
  62. Von Elert E., Jüttner F. 1996. Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum // Phycologia. V. 35. P. 68. https://doi.org/10.2216/i0031-8884-35-6S-68.1
  63. Yang J., Deng X., Xian Q. et al. 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical // Hydrobiologia. V. 727. P. 65. https://doi.org/10.1007/s10750-013-1787-z
  64. Zak A.A., Kosakowska A. 2016. Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions // Oceanol. Hydrobiol. Studies. V. 45. P. 131. https://doi.org/10.1515/ohs-2016-0013
  65. Zhang Y., Duy S.V., Munoz G., Sauvé S. 2022. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: a meta-analysis // Sci. Total Environ. V. 810. P. 152104. https://doi.org/10.1016/j.scitotenv.2021.152104

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема изучения аллелопатии у цианобактерий (по: Leão et al., 2009).

Скачать (278KB)
3. Рис. 2. Структура некоторых аллелохимикатов цианобактерий: цианобактерин (а), фишереллин А (б), 4,4'-дигидроксибифенил (в), микроцистин-LR (г).

Скачать (120KB)

© Российская академия наук, 2025