Определение последствий изменения климата для водных экосистем методами биотестирования: обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Описаны научно-методологические возможности биотестирования в области изучения последствий изменений климата для водных объектов и населяющих их гидробионтов. На аквакультурах рыб выявлено, что увеличение температуры воды изменяет биохимические показатели внутренних сред организмов, влияет на их поведение и количество потомства. Прогнозируется ряд биогеохимических трансформаций водных экосистем: снижение уровня рН воды, минерализация органического вещества донных отложений, высвобождение и увеличение биодоступности соединений потенциально токсичных элементов. Методами биотестирования на монокультурах и лабораторных микрокосмах показано, что пессимальные значения температуры и каскад сопутствующих изменений приведут к перестройке сообщества гидробионтов, изменениям ареалов обитания организмов, исчезновению стенотермных видов. Реалистичность таких сценариев подтверждается палеоданными и явлениями, происходящими уже сейчас.

Полный текст

Доступ закрыт

Об авторах

А. С. Олькова

Вятский государственный университет

Автор, ответственный за переписку.
Email: usr08617@vyatsu.ru
Россия, Киров

Список литературы

  1. Анисимов О.А., Борщ С.В., Георгиевский В.Ю. и др. 2012. Методы оценки последствий изменения климата для физических и биологических систем. М.: Научно-исслед. центр космическ. гидрометеорол. “Планета”. 512 с.
  2. Брагинский Л.П., Береза В.Д., Биргер Т.И. и др. 1979. Экспериментальное тестирование токсичности водной среды и повышение чувствительности биологических тестов // Влияние загрязняющих веществ на гидробионтов и экосистемы водоемов. Л.: Наука. С. 324.
  3. Филенко О.Ф., Михеева И.В. 2007. Основы водной токсикологии. М.: Колос.
  4. Abbink W., Blanco G.A., Roques J.A.C. et al. 2012. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems // Aquaculture. V. 330(333). P. 130. https://doi.org/10.1016/j.aquaculture.2011.11.043
  5. Agyekum T.P., Arko-Mensah J., Botwe P.K. et al. 2022. Relationship between temperature and Anopheles gambiae sensu lato mosquitoes’ susceptibility to pyrethroids and expression of metabolic enzymes // Parasites Vectors. V. 15. № 1. P. 163. https://doi.org/10.1186/s13071-022-05273-z
  6. Ahonen S.A., Hayden B., Leppänen J.J. et al. 2018. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes // Sci. Total Environ. V. 637. P. 1586. https://doi.org/10.1016/j.scitotenv.2018.04.436
  7. Aichner B., Wünnemann B., Callegaro A. et al. 2022. Asynchronous responses of aquatic ecosystems to hydroclimatic forcing on the Tibetan Plateau // Communications Earth and Environ. V. 3. № 1. e3. https://doi.org/10.1038/s43247-021-00325-1
  8. Allen J., Gross E., Courcoul C. 2021. Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study // Water Res. V. 19015. e116713. https://doi.org/10.1016/j.watres.2020.116713
  9. Almeida Â., Calisto V., Esteves V. et al. 2021. Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves? // Aquat. Toxicol. V. 230. e105673. https://doi.org/10.1016/j.aquatox.2020.105673
  10. Andrade M., De Marchi L., Pretti C. et al. 2019. The impacts of warming on the toxicity of carbon nanotubes in mussels // Mar. Environ. Res. V. 145. P. 11. https://doi.org/10.1016/j.marenvres.2019.01.013
  11. Andrade M., Soares A.M.V.M., Solé M. et al. 2022. Do climate change related factors modify the response of Mytilus galloprovincialis to lanthanum? The case of temperature rise // Chemosphere. V. 307. e135577. https://doi.org/10.1016/j.chemosphere.2022.135577
  12. Bardin M.Y., Ran’kova E.Y., Platova T.V. et al. 2020. Modern Surface Climate Change as Inferred from Routine Climate Monitoring Data // Russ. Meteorol. Hydrol. V. 45. № 5. P. 317. https://doi.org/10.3103/S1068373920050027
  13. Basconcillo J., Moon I.-J. 2022. Increasing activity of tropical cyclones in East Asia during the mature boreal autumn linked to long-term climate variability // NPJ Clim. Atmos. Sci. V. 5(1). e4. https://doi.org/10.1038/s41612-021-00222-6
  14. Beringer J., Moore C.E., Cleverly J. et al. 2022. Bridge to the future: important lessons from 20 years of ecosystem observations made by the OzFlux network // Globаl Chang Biol. V. 28(11). P. 3489. https://doi.org/10.1111/gcb.16141
  15. Bosserelle A.L., Morgan L.K., Hughes M.W. 2022. Groundwater rise and associated flooding in coastal settlements due to sea-level rise: a review of processes and methods // Earth’s Future. V. 10. № 7. e2021EF002580. https://doi.org/10.1029/2021EF002580
  16. Carneiro A.P., Soares C.H.L., Pagliosa P.R. 2021. Does the environmental condition affect the tolerance of the bivalve Anomalocardia flexuosa to different intensities and durations of marine heatwaves? // Mar. Pollut. Bull. V. 168. № 112410. https://doi.org/10.1016/j.marpolbul.2021.112410
  17. Costábile A., Castellano M., Aversa-Marnai M. et al. 2022. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress // Fish Shellfish Immunol. V. 128. P. 505. https://doi.org/10.1016/j.fsi.2022.08.022
  18. Couret J., Dotson E., Benedict M.Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae) // PLoS ONE. V. 9. e87468. https://doi.org/10.1371/journal.pone.0087468
  19. Daniel D., Nunes B., Pinto E. et al. 2022. Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints // Biology. V. 11(4). № 581. https://doi.org/10.3390/biology11040581
  20. Devotta D.A., Kent A.D., Nelson D.M. et al. 2022. Effects of alder- and salmon-derived nutrients on aquatic bacterial community structure and microbial community metabolism in subarctic lakes // Oecologia. V. 199. № 3. P. 711. https://doi.org/10.1007/s00442-022-05207-7
  21. Du P., Ye W.-J., Deng B.-P. et al. 2022. Long-term changes in zooplankton in the Changjiang estuary from the 1960s to 2020 // Front. Mar. Sci. V. 9. e961591. https://doi.org/10.3389/fmars.2022.961591
  22. Ferreira P., Gabriel A., Sousa J.P. et al. 2022. Representativeness of Folsomia candida to assess toxicity of a new generation insecticide in different temperature scenarios // Sci. Total Environ. V. 837. e155712. https://doi.org/10.1016/j.scitotenv.2022.155712
  23. Fulton C.A., Huff Hartz K.E., Fuller N.W. et al. 2021. Fitness costs of pesticide resistance in Hyalella azteca under future climate change scenarios // Sci. Total Environ. V. 753. e141945. https://doi.org/10.1016/j.scitotenv.2020.141945
  24. Ibarra-Morales D., Silva-Aguilera R.A., Oseguera L.A. et al. 2022. Impacts of global change on two tropical, high mountain lakes in Central Mexico // Sci. Total Environ. V. 852. e158521. https://doi.org/10.1016/j.scitotenv.2022.158521
  25. Jiang Y., Guo J., Haisa A. et al. 2022.Genome-wide association analysis of heat tolerance in the northern pike (Esox lucius) // Aquaculture. V. 559. e738459. https://doi.org/10.1016/j.aquaculture.2022.738459
  26. Kincaid D.W., Lara N.A.H., Tiegs S.D. et al. 2019. Decomposition in flocculent sediments of shallow freshwaters and its sensitivity to warming // Freshwater Sci. V. 38(4). P. 899. https://doi.org/10.1086/706184
  27. Lazare S., Vitoshkin H., Alchanatis V. et al. 2022. Canopy-cooling systems applied on avocado trees to mitigate heatwaves damages // Sci. Rep. V. 12(1). e12563. https://doi.org/10.1038/s41598-022-16839-3
  28. Li S., Liu Y., Li B. et al. 2022. Physiological responses to heat stress in the liver of rainbow trout (Oncorhynchus mykiss) revealed by UPLC-QTOF-MS metabolomics and biochemical assays // Ecotoxicol. Environ. Safety. V. 242. e113949. https://doi.org/10.1016/j.ecoenv.2022.113949
  29. Li A.J., Zhou G.-J., Lai R.W.S. et al. 2022. Extreme cold or warm events can potentially exacerbate chemical toxicity to the marine medaka fish Oryzias melastigma // Aquat. Toxicol. V. 249. e106226. https://doi.org/10.1016/j.aquatox.2022.106226
  30. Macêdo R.L., Sousa F.D.R., Dumont H.J. et al. 2022. Climate change and niche unfilling tend to favor range expansion of Moina macrocopa Straus 1820, a potentially invasive cladoceran in temporary waters // Hydrobiology. V. 849. P. 4015. https://doi.org/10.1007/s10750-022-04835-7
  31. Murdock C.C., Paaijmans K.P., Cox-Foster D. et al. 2012. Rethinking vector immunology: the role of environmental temperature in shaping resistance // Nat. Rev. Microbiol. V. 10. № 12. P. 869. https://doi.org/10.1038/nrmicro2900
  32. Odum E.P. 1983. Basic Ecology. USA; New York: Harcourt Brace College Publishers.
  33. Olkova A.S., Kantor G.Y., Kutyavina T.I. et al. 2018. The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis // ET&C. V. 37(2). P. 376. https://doi.org/10.1002/etc.3956
  34. O’Neill E.A., Rowan N.J., Fogarty A.M. 2019. Novel use of the alga Pseudokirchneriella subcapitata, as an early-warning indicator to identify climate change ambiguity in aquatic environments using freshwater finfish farming as a case study // Sci. Total Environ. V. 692. P. 209. https://doi.org/10.1016/j.scitotenv.2019.07.243
  35. Polst B.H., Hilt S., Stibor H. et al. 2022. Warming lowers critical thresholds for multiple stressor–induced shifts between aquatic primary producers // Sci. Total Environ. V. 83810. e156511. https://doi.org/10.1016/j.scitotenv.2022.156511
  36. Qiu S., Yu Q., Niu T. еt al. 2022. Restoration and renewal of ecological spatial network in mining cities for the purpose of enhancing carbon Sinks: the case of Xuzhou, China // Ecol. Indic. V. 143. e109313. https://doi.org/10.1016/j.ecolind.2022.109313
  37. Resende A.C., Mauro Carneiro Pereira D., Cristina Schleger I. et al. 2022. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus // J. Fish Biol. V. 100(5). P. 1245. https://doi.org/10.1111/jfb.15036
  38. Rolton A., Rhodes L., Hutson K.S. et al. 2022. Effects of harmful algal blooms on fish and shellfish species: a case study of New Zealand in a changing environment // Toxins. V. 14(5). e341. https://doi.org/10.3390/toxins14050341
  39. Rusanov A.G., Bíró T., Kiss K.T. et al. 2022. Relative importance of climate and spatial processes in shaping species composition, functional structure and beta diversity of phytoplankton in a large river // Sci. Total Environ. V. 807. e150891. https://doi.org/10.1016/j.scitotenv.2021.150891
  40. Shahjahan Md., Islam, Md. J., Hossain Md T. et al. 2022. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish // Sci. Total Environ. V. 84315. e156910. https://doi.org/10.1016/j.scitotenv.2022.156910
  41. Sun F., Hu W., Cao J. et al. 2022. Sustained and intensified lacustrine methane cycling during Early Permian climate warming // Nat. Commun. V. 13(1). e4856. https://doi.org/10.1038/s41467-022-32438-2
  42. Vieira H.C., Bordalo M.D., Rodrigues A.C.M. et al. 2021.Water temperature modulates mercury accumulation and oxidative stress status of common goby (Pomatoschistus microps) // Environ. V. 193. e110585. https://doi.org/10.1016/j.envres.2020.110585
  43. Vijayaraj V., Laviale M., Allen J. et al. 2022. Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides // Water Res. V. 2161. e118325. https://doi.org/10.1016/j.watres.2022.118325
  44. Wang F.I., Ding G., Ng G.S. et al. 2022. Luciferase-based GloSensor™ cAMP assay: temperature optimization and application to cell-based kinetic studies // Methods. V. 203. P. 249. https://doi.org/10.1016/j.ymeth.2021.10.009
  45. Wang Z., Liu R., Zhang L. et al. 2022. Thermoregulation of Eremias argus alters temperature-dependent toxicity of beta-cyfluthrin: ecotoxicological effects considering ectotherm behavior traits // Environ. Pollut. V. 293. e118461. https://doi.org/10.1016/j.envpol.2021.118461
  46. Yang X., Tong G., Dong L. et al. 2022. Evaluation of qPCR reference genes for taimen (Hucho taimen) under heat stress // Sci. Reports. V. 12. № 1. P. 1. https://doi.org/10.1038/s41598-021-03872-x
  47. Zhang P., Wang T., Zhang H. et al. 2022. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems // Environ Int. V. 168. e10747. https://doi.org/10.1016/j.envint.2022.107478

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024