Influence of microplastics on freshwater bivalves (review)
- 作者: Chuikо G.M.1, Kholmogorova N.V.2,3, Zharikov G.P.4
-
隶属关系:
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences
- Udmurt State University
- National Research Tomsk State University
- Yaroslavl State Medical University
- 期: 卷 17, 编号 5 (2024)
- 页面: 837-857
- 栏目: ВОДНАЯ ТОКСИКОЛОГИЯ
- URL: https://kazanmedjournal.ru/0320-9652/article/view/670081
- DOI: https://doi.org/10.31857/S0320965224050151
- EDN: https://elibrary.ru/XQEZIH
- ID: 670081
如何引用文章
详细
Anthropogenic pollution of the aquatic environment with microplastics is one of the most urgent but least studied problems of modern ecotoxicology. The review, based on recent literature data, provides an analysis of studies in the field of absorption, bioaccumulation, and biological effects of microplastic exposure in freshwater bivalve molluscs (Bivalvia). A total of 22 studies have been conducted so far, which were performed on representatives of three families: Cyrenidae (45), Unionidae (25) and Dreissenidae (30%). The conducted studies are represented by field observations (43.5), field (8.7) and laboratory (47.8%) experiments. It has been shown that freshwater bivalves, as active filters, are able to absorb and accumulate in soft tissues (gills, hepatopancreas) microplastic particles from both water and bottom sediments, perceiving them as food objects. Bioaccumulation of microplastics in molluscs leads to functional and structural disorders in the body. The joint action of microplastics and other pollutants (cadmium, polychlorinated biphenyls, pharmacological drugs) can cause both synergistic and antagonistic effects in the biological responses of molluscs. Based on the conducted studies, it is suggested to use bivalve molluscs as organisms-bioindicators of freshwater pollution with microplastics.
全文:

作者简介
G. Chuikо
Papanin Institute for Biology of Inland Waters Russian Academy of Sciences
编辑信件的主要联系方式.
Email: gchuiko@ibiw.ru
俄罗斯联邦, Borok, Nekouzskii raion, Yaroslavl oblast
N. Kholmogorova
Udmurt State University; National Research Tomsk State University
Email: gchuiko@ibiw.ru
俄罗斯联邦, Udmurt Republic, Izhevsk; Tomsk
G. Zharikov
Yaroslavl State Medical University
Email: gchuiko@ibiw.ru
俄罗斯联邦, Yaroslavl
参考
- Зобков М.Б., Есюкова Е.Е. 2018. Микропластик в морской среде: обзор методов отбора, подготовки и анализа проб воды, донных отложений и береговых наносов // Океанология. Т. 58. № 1. С. 149. https://doi.org/10.7868/S0030157418010148
- Казимирук В.Д. 2022. Почему в зарослях макрофитов много микропластика: действующие механизмы // Матер. I Всерос. конф. с междунар. участием “MicroPlasticsEnvironment – 2022” (МРЕ-2022), 02–06 августа 2022 г., п. Шира, Хакасия. Томск: Изд-во Томск. гос. ун-та. С. 43.
- Чубаренко И.П., Есюкова Е.Е., Хатмуллина Л.И. и др. 2021. Микропластик в морской среде. М.: Науч. мир.
- Atamanalp M., Kokturk M., Gündüz F. et al. 2023. The Use of zebra mussel (Dreissena polymorpha) as a sentinel species for the microplastic pollution of freshwater: the case of Beyhan Dam Lake, Turkey. Sustainability 15, 1422. https://doi.org/10.3390/su15021422
- Atici A.A. 2022. The first evidence of microplastic uptake in natural freshwater mussel, Unio stevenianus from Karasu River, Turkey // Biomarkers. V. 27. Issue 2. P. 118. https://doi.org/10.1080/1354750X.2021.2020335
- Baldwin A.K., Spanjer A.R., Rosen M.R. et al. 2020. Microplastics in Lake Mead National Recreation Area, USA: Occurrence and biological uptake // PLoS ONE. V. 15(5). e0228896. https://doi.org/10.1371/journal.pone.0228896
- Bellasi A., Binda G., Pozzi A. et al. 2020. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms // Environments. V. 7. № 4. https://doi.org/10.3390/environments7040030
- Berglund E., Fogelberg V., Nilsson P.A. et al. 2019. Microplastics in a freshwater mussel (Anodonta anatina) in Northern Europe // Sci. Total Environ. V. 697. 134192. https://doi.org/10.1016/j.scitotenv.2019.134192
- Bergmann M., Gutow L., Klages M. 2015. Marine Anthropogenic Litter. Cham: Springer. https://doi.org/10.1007/978-3-319-16510-3
- Bour A., Avio C.C., Gorbi S. et al. 2018. Influence of habitat, feeding mode and trophic level // Environ. Pollut. V. 243. P. 1217. https://doi.org/10.1016/j.envpol.2018.09.115
- Brahney J., Hallerud M., Heim E. et al. 2020. Plastic rain in protected areas of the United States // Science. V. 368(80). P. 1257. https://doi.org/10.1126/science.aaz5819
- Cai Y., Li C., Zhao Y. 2022. A Review of the migration and transformation of microplastics in Inland Water Systems // Int. J. Environ. Res. Public Health. V. 19(1). P. 148. https://doi.org/10.3390/ijerph19010148
- Carpenter E.J., Anderson S.J., Harvey G.R. et al. 1972. Polystyrene spherules in coastal waters // Science. V. 178(4062). Р. 749. https://doi.org/10.1126/science.178.4062.749
- Carpenter E.J., Smith K.L. 1972. Plastics on the Sargasso Sea surface // Science. V. 175. Р. 1240. https://doi.org/10.1126/science.175.4027.1240
- Castro-Castellon A.T., Horton A.A., Hughes J.M.R. et al. 2022. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels // Sci. Total Environ. V. 816. P. 151. https://doi.org/10.1016/j.scitotenv.2021.151638
- Chen M., Yue Y., Bao X. et al. 2022. Microplastics as contaminants in water bodies and their threat to the aquatic animals: a mini-review // Animals. V. 12. Р. 2864. https://doi.org/10.3390/ani12202864
- Cole M., Lindeque P. 2013. Microplastic ingestion by zooplankton // Environ. Sci. Technol. V. 47. № 12. P. 6646. https://doi.org/10.1021/es400663f
- Cole M., Lindeque P., Halsband C. et al. 2011. Microplastics as contaminants in the marine environment: A review // Mar. Pollut. Bull. V. 62. Issue 12. P. 2588. https://doi.org/10.1016/j.marpolbul.2011.09.025
- Derraik J.G.B. 2002. The pollution of the marine environment by plastic debris: a review // Mar. Pollut. Bull. V. 44(9). P. 842. https://doi.org/10.1016/s0025-326x(02)00220-5
- Di M., Wang J. 2018. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China // Sci. Total Environ. V. 616–617. Р. 1620. https://doi.org/10.1016/j.scitotenv.2017.10.150
- Ding J., Sun C., Li J. et al. 2022. Microplastics in global bivalve mollusks: A call for protocol standardization // J. Hazardous Materials. V. 438. P. 129490. https://doi.org/10.1016/j.jhazmat.2022.129490
- Domogalla-Urbansky J., Anger P.M., Ferling H. et al. 2019. Raman microspectroscopic identification of microplastic particles in freshwater bivalves (Unio pictorum) exposed to sewage treatment plant effluents under different exposure scenarios // Environ. Sci. Pollut. Res. V. 26. P. 2007. https://doi.org/10.1007/s11356-018-3609-3
- Du S., Zhu R., Cai Y. et al. 2021. Environmental fate and impacts of microplastics in aquatic ecosystems: A review // RSC Adv. V. 11. Р. 15 762. https://doi.org/10.1039/d1ra00880c
- Egbeocha C.O., Malek S., Emenike C.U. et al. 2018. Feasting on microplastics ingestion by and effects on marine organisms // Aquat. Biol. V. 27. P. 93. https://doi.org/10.3354/ab00701
- Eriksen M., Mason S., Wilson S., et al. 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes // Mar. Pollut. Bull. V. 77. P. 177e182. https://dx.doi.org/10.1016/j.marpolbul.2013.10.007
- Esterhuizen M., Buchenhorst L., Kim Y.J. et al. 2022. In vivo oxidative stress responses of the freshwater basket clam Corbicula javanicus to microplastic fibres and particles // Chemosphere. V. 296. P. 134 037. https://doi.org/10.1016/j.chemosphere.2022.134037
- Farrell P., Nelson K. 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) // Environ. Pollut. V. 177. P. 1. http://dx.doi.org/10.1016/j.envpol.2013.01.046
- Frank Y., Ershova A., Batasheva S. et al. 2022. Microplastics in freshwater: a focus on the Russian inland waters // Water. V. 14. Р. 3909. https://doi.org/10.3390/w14233909
- Free C.M., Jensen O.P., Mason S.A. et al. 2014. High-levels of microplastic pollution in a large, remote, Mountain Lake // Mar. Pollut. Bull. V. 85. P. 156. https://dx.doi.org/10.1016/j.marpolbul.2014.06.001
- Gregory M.R. 2009. Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society. B // Biol. Sci. V. 364. Р. 2013. https://doi.org/10.1098/rstb.2008.0265
- Guilhermino L., Vieira L.R., Ribeiro D. et al. 2018. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea // Sci. Total Environ. V. 622–623. Р. 1131. https://doi.org/10.1016/j.scitotenv.2017.12.020
- Guo X., Cai Y., Ma C. et al. 2021. Combined toxicity of micro/nano scale polystyrene plastics and ciprofloxacin to Corbicula fluminea in freshwater sediments // Sci. Total Environ. V. 789. https://doi.org/10.1016/j.scitotenv.2021.147887
- Guzzetti E., Sureda A., Tejada S. et al. 2018. Microplastic in marine organism: environmental and toxicological effects // Environ. Toxicol. and Pharmacol. V. 64. P. 164. https://doi.org/10.1016/j.etap.2018.10.009
- Hoellein T., Rovegno C., Uhrin A.V. et al. 2021. Microplastics in invasive freshwater mussels (dreissena sp.): spatiotemporal variation and occurrence with chemical contaminants // Frontiers in Mar. Sci. V. 8. Р. 690. https://doi.org/10.3389/fmars.2021.690401
- Kallenbach E.M.F., Friberg N., Lusher A. et al. 2022. Anthropogenically impacted lake catchments in Denmark reveal low microplastic pollution // Environ. Sci. Pollut. Res. V. 29. P. 47726. https://doi.org/10.1007/s11356-022-19001-8
- Klimova Y.S., Chuiko G.M., Pesnya D.S. et al. 2020. Biomarkers of oxidative stress in freshwater bivalve mollusks (review) // Inland Water Biol. V. 13. № 4. P. 681. https://doi.org/10.1134/S1995082920060073
- Li J., Liu H., Chen J.P. 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection // Water Res. V. 137. P. 362. https://doi.org/10.1016/j.watres.2017.12.056
- Li L., Su L., Cai H. et al. 2019. The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties // Chemosphere. V. 221. P. 107. https://doi.org/10.1016/j.chemosphere.2019.01.024
- Li J., Yang D., Li L. et al. 2015. Microplastics in commercial bivalves from China // Environ. Pollut. V. 207. Р. 190. https://dx.doi.org/10.1016/j.envpol.2015.09.018
- Lusher A.L., Welden N.A., Sobral P. et al. 2017. Sampling, isolating and identifying microplastics ingested by fish and invertebrates // Anal. Methods. V. 9. Р. 1346. https://doi.org/10.1039/c6ay02415g
- Magni S., Gagné F., André C. et al. 2018. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) // Sci. Total Environ. V. 631–632. Р. 778. https://doi.org/10.1016/j.scitotenv.2018.03.075
- Martyniuk V., Khoma V., Matskiv T. et al. 2022. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis // Comp. Biochem. and Physiol. Part C. V. 261. P. 109. https://doi.org/10.1016/j.cbpc.2022.109425
- Masura J., Baker J., Foster G. et al. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments // NOAA Technical Memorandum NOS-OR&R-48.
- McNeish R.E., Kim L.H., Barrett H.A. et al. 2018. Microplastic in riverine fish is linked to species traits // Sci. Rep. V. 8. P. 11639. https://doi.org/10.1038/s41598-018-29980-9
- Merzel R.L., Purser L., Soucy T.L. et al. 2020. Uptake and retention of nanoplastics in quagga mussels // Global Challenges. V. 4. P. 1800104. https://doi.org/10.1002/gch2.201800104
- Moore C.J. 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat // Environ. Res. V. 108(2). P. 131. https://doi.org/10.1016/j.envres.2008.07.025
- OECD Guidelines for the Testing of Chemicals – 218: Sediment–water Chironomid Toxicity Test Using Spiked Sediment. Organisation for Economic Cooperation and Development. 2004. France. Paris. P. 218.
- Parra S., Varandas S., Santos D. et al. 2021. Multi-biomarker responses of Asian clam Corbicula fluminea (Bivalvia, Corbiculidea) to cadmium and microplastics pollutants // Water. V. 13. P. 394. https://doi.org/10.3390/w13040394
- Pastorino P., Prearo M., Anselmi S. et al. 2021. Use of the zebra mussel Dreissena polymorpha (Mollusca, Bivalvia) as a bioindicator of microplastics pollution in freshwater ecosystems: a case study from Lake Iseo (North Italy) // Water. V. 13. Р. 434. https://doi.org/10.3390/w13040434
- Patterson J., Jeyasanta K.I., Sathish N. et al. 2019. Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, Southeastern India // Sci. Total Environ. V. 691. P. 727. https://doi.org/10.1016/j.scitotenv.2019.07.063
- Pedersen A.F., Gopalakrishnan K., Boegehold A.G. et al. 2020. Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes // Environ. Pollut. V. 260. P. 113964. https://doi.org/10.1016/j.envpol.2020.113964
- Petersen F., Hubbart J.A. 2020. The occurrence and transport of microplastics: the state of the science // Sci. Total. Environ. V. 758. Р. 143936. https://doi.org/10.1016/j.scitotenv.2020.143936
- Plastics Europe. Plastics – The Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021 (accessed on 10 February 2023).
- Rochman C.M., Parnis J.M., Browne M.A. et al. 2017. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus) // PLoS ONE. V. 12(11). e0187664. https://doi.org/10.1371/journal.pone.0187664
- Sheehan D., Power A. 1999. Effects of seasonality on xenobiotic and antioxidant defence mechanism of bivalve molluscs // Comp. Biochem. and Physiol. V. 123. № 3. P. 193.
- Sighicelli M., Pietrelli L., Lecce F. et al. 2018. Microplastic pollution in the surface waters of Italian Subalpine Lakes // Environ. Pollut. V. 236. P. 645. https://doi.org/10.1016/j.envpol.2018.02.008
- Su L., Cai H., Kolandhasamy P. et al. 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems // Environ. Pollut. V. 234. P. 347. https://doi.org/10.1016/j.envpol.2017.11.075
- Su L., Xue Y., Li L. et al. 2016. Microplastics in Taihu Lake, China // Environ. Pollut. V. 216. September Pages 711–719. https://doi.org/10.1016/j.envpol.2016.06.036
- Sussarellu R., Suquet M., Thomas Y. et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics // Proc. Natl. Acad. Sci. U.S.A. V. 113. Р. 2430. https://doi.org/10.1073/pnas.1519019113
- Thiel M., Gutow L. 2005. The ecology of rafting in the marine environment. I. The floating substrata, Oceanography and Marine Biology: An Annual Review. V. 42. P. 181. https://doi.org/10.1201/9780203507810.ch6
- Van Cauwenberghe L., Devriese L., Galgani F. et al. 2015. Microplastics in sediments: a review of techniques, occurrence and effects. Particles in the Oceans: Implication for a safe marine environment // Mar. Environ. Res. V. 111. Р. 5. https://doi.org/10.1016/j.marenvres.2015.06.007
- Van Cauwenberghe L., Janssen C.R. 2014. Microplastics in bivalves cultured for human consumption // Environ. Pollut. V. 193. P. 65. https://dx.doi.org/10.1016/j.envpol.2014.06.010
- Van Cauwenberghe L., Vanreusel A., Mees J. et al. 2013. Microplastic pollution in deep-sea sediments // Environ. Pollut. V. 182. Р. 495. https://doi.org/10.1016/j.envpol.2013.08.013
- Wagner M., Scherer C., Alvarez-Muñoz D. et al. 2014. Microplastics in freshwater ecosystems: what we know and what we need to know // Environ. Sci. Europe. V. 26(1). https://doi.org/10.1186/s12302-014-0012-7
- Walling D.E. 2009. The Impact of global change on erosion and sediment transport by rivers: current progress and future challenges. The United Nations World Water Development. Report 3. Water in a Changing World, International Sediment Initiative of UNESCO-IHP; UNESCO: Paris, France.
- Wardlaw C., Prosser R.S. 2020. Investigation of microplastics in freshwater mussels (lasmigona costata) from the Grand River Watershed in Ontario, Canada // Water, Air and Soil Pollut. V. 231. Р. 405. https://doi.org/10.1007/s11270-020-04741-5
- Weber A., Jeckel N., Wagner M. 2020. Combined effects of polystyrene microplastics and thermal stress on the freshwater mussel Dreissena polymorpha // Sci. Total Environ. V. 718. P. 137253. https://doi.org/10.1016/j.scitotenv.2020.137253
- Wright S.L., Thompson R.C., Galloway T.S. 2013. The physical impacts of microplastics on marine organisms: A review // Environ. Pollut. V. 178. P. 48392. https://dx.doi.org/10.1016/j.envpol.2013.02.031
- Xiong X., Zhang K., Chen X. et al. 2018. Sources and distribution of microplastics in China’s largest inland lake-Qinghai Lake // Environ. Pollut. V. 235. Р. 899906. https://doi.org/10.1016/j.envpol.2017.12.081
- Zhang K., Gong W., Lv J. et al. 2015. Accumulation of floating microplastics behind the Three Gorges Dam // Environ. Pollut. V. 204. Р. 117. https://doi.org/10.1016/j.envpol.2015.04.023
- Zhang K., Shi H., Peng J. et al. 2018. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management // Sci. Total. Environ. V. 630. P. 1641. https://doi.org/10.1016/j.scitotenv.2018.02.300
- Zhang H., Hong X., Yan S. et al. 2020. Environmentally relevant concentrations of bifenthrin induce changes in behaviour, biomarkers, histological characteristics, and the transcriptome in Corbicula fluminea // Sci. Total Environ. V. 728. Р. 138821. https://doi.org/10.1016/j.scitotenv.2020.138821
补充文件
