Characteristics of erythron of the head kidney and circulating blood of the flounder gloss (Platichthys flesus) during the annual cycle

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The erythron composition of the head kidney (pronephros) and circulating blood in the cold-loving flounder-gloss (Platichthys flesus L., 1758) during the annual cycle was studied. The erythron of pronephros was mainly represented by erythroblasts (EB) and basophilic normoblasts (BN). The content of polychromatophilic normoblasts (PN) was low (less than 2%). The maximum size of the erythroid germ of hematopoiesis in the pronephros was noted during the post-spawning period (April–July). It accounted for up to 17% of the cellular mass of the prints. BN and PN, which were not capable of proliferation, mainly prevailed in the blood. The maximum content of these cell forms was also noted during the post-spawning periods. Cells of earlier generations (EB) were not detected at all in the blood. The increase in the production of erythroid cells by hematopoietic tissue coincided with an increase in the number of circulating erythrocytes in the blood of flounder-gloss (R2 0.608 and 0,991), which indicated a shift in the erythrocyte balance in the red blood system in favor of production processes. The factors responsible for the generation of erythrocytes by hematopoietic tissue in fish in a spawning state are considered.

全文:

受限制的访问

作者简介

A. Soldatov

A.O. Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences; Sevastopol State University

编辑信件的主要联系方式.
Email: alekssoldatov@yandex.ru
俄罗斯联邦, Sevastopol; Sevastopol

I. Parfyonova

Sevastopol State University

Email: alekssoldatov@yandex.ru
俄罗斯联邦, Sevastopol

T. Kukhareva

A.O. Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
俄罗斯联邦, Sevastopol

N. Shalagina

A.O. Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
俄罗斯联邦, Sevastopol

V. Rychkova

A.O. Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences

Email: alekssoldatov@yandex.ru
俄罗斯联邦, Sevastopol

参考

  1. Золотова Т.Е. 1989. Экспериментальное исследование кроветворения у рыб: Автореф. канд. дис. М.: МГУ.
  2. Солдатов А.А. 2005. Эритропоэз и концентрация метгемоглобина в крови кефали-сингиля (Liza aurata, Risso) на протяжении годового цикла // Современные проблемы физиологии и биохимии водных организмов. Петрозаводск: Карельск. науч. центр РАН. V. 1. С. 182.
  3. Солдатов А.А. 2023. Случаи спонтанного роста концентрации метгемоглобина в крови костистых рыб на протяжении годового цикла // Биология внутр. вод. № 4. С. 549. https://doi.org/10.31857/S032096522304023X
  4. Al-Hassan L.A.J, Al-Abood A.Y., Al-Seyab A.A. 1990. Seasonal variations in the haemoglobin concentration and haematocrit values of Silurus triostegus // Acta Ichthyol. et Piscatoria. V. 20. Iss. 1. P. 99. https://doi.org/10.3750/AIP1990.20.1.08
  5. Andreyeva A.Y., Soldatov A.A., Kukhareva T.A. 2017. Black scorpionfish (Scorpaena porcus) hemopoiesis: Analysis by flow cytometry and light microscopy // Anatom. Rec. V. 300. Iss. 11. P. 1993. https://doi.org/10.1002/ar.23631
  6. Chou C-F., Tohari S., Brenner S., Venkatesh B. 2004. Erythropoietin gene from a teleost fish, Fugu rubripes // Blood. V. 104. P. 1498. https://doi.org/10.1182/blood-2003-10-3404
  7. Chu C.Y., Cheng C.H., Yang C.H., Huang C.J. 2008. Erythropoietins from teleosts // Cell Mol. Life Sci. V. 65. P. 3545. https://doi.org/10.1007/s00018-008-8231-y
  8. El-Saydah H.A.-A., Abdu S.B.S., El-Sayed T.A., Fouad H.F. 2010. Haemopoiesis in the head kidney of tilapia, Oreochromis niloticus (Teleostei: Cichlidae): a morphological (optical and ultrastructural) study // Fish Physiol. Biochem. V. 36. P. 323. https://doi.org/10.1007/s10695-008-9297-z
  9. Fischer U., Ototake M., Nakanishi T. 1998. Life span of circulating blood cells in Ginbuna crucian carp (Carassius auratus langsdorfii) // Fish Shellfish Immunol. V. 8. P. 339. https://doi.org/10.1006/fsim.1998.0144
  10. Hammer Ø., Harper D.A.T. 2006. Paleontological data analysis. Blackwell: Oxford. https://doi.org/10.1002/jqs.1107
  11. Hilge V., Klinger H. 1978. Changes in the hemogram of the male European eel (Anguilla anguilla) during induced maturation. ICES CM.
  12. Houston A.H. 1990. Blood and circulation // Methods for fish biology. Bethesda. Am. Fish Soc. P. 273. https://doi.org/10.1080/21658005.2013.846963
  13. Jagoe H.C., Welter D.A. 2011. Quantitative comparisons of the morphology and ultrastructure of erythrocyte nuclei from seven freshwater fish species // Can. J. Zool. V. 73. Iss. 10. P. 1951. https://doi.org/10.1139/z95-229
  14. Jawad L.A., Al-Mukhtar M.A., Ahmed H.K. 2004. The relationship between haematocrit and some biological parameters of the Indian shad, Tenualosa ilisha (Family Clupeidae) // Anim. Biodiver. Conservat. V. 27. Iss. 2. P. 47.
  15. Joshi P.C. 1989. Seasonal changes in the blood parameters of a hill-stream teleost, Channa gachua // Comp. Physiol. Ecol. V. 14. Iss. 2. P. 7.
  16. Kondera E. 2019. Haematopoiesis and Haematopoietic Organs in Fish // Sci. Ann. Polish Soc. Anim. Production. V. 15. P. 9. https://doi.org/10.5604/01.3001.0013.453
  17. Kulkeaw K., Sugiyama D. 2012. Zebrafish erythropoiesis and the utility of fish as models of anemia // Stem Cell Res. Ther. V. 3. Iss. 6. P. 55. https://doi.org/10.1186/scrt146
  18. Lai J.C.C., Kakuta I., Mok H.O.L. et al. 2006. Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen // J. Exp. Biol. V. 209. P. 2734. https://doi.org/10.1242/jeb.02279
  19. Mahoney J.B., McNulty J.K. 1992. Disease-associated blood changes and normal seasonal hematological variation in winter flounder in the Hudson-Raritan Estuary // Trans. Amer. Fish Soc. V. 121. Iss. 2. P. 261. https://doi.org/10.1577/1548-8659(1992)121<0261:NDBCAN>2.3.CO;2
  20. Moritz K.M., Lim G.B., Wintour E.M. 1997. Developmental regulation of erythropoietin and erythropoiesis // Am. J. Physiol. V. 273. P. R1829. https://doi.org/10.1152/ajpregu. 1997.273.6.R1829
  21. Obeagu E. I. 2015. A review on Erythropoietin // Int. J. Advanced Res. Biol. Sci. 2015. V. 2. Iss. 4. P. 35.
  22. Ochiai A., Ogawa M., Umeda S., Taniguchi N. 1975. Change of blood properties of maturing japan eel at hormonal influences // Bull. Jap. Soc. Sci. Fish. V. 41. Iss. 6. P. 609.
  23. Phillips M.C.L., Moyes C.D., Tufts B.L. 2000. The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells // J. Exp. Biol. V. 203. Iss. 6. P. 1039. https://doi.org/10.1242/jeb.203.6.1039
  24. Pottinger T.G., Pickering A.D. 1987. Androgen levels and erythrocytosis in maturing brown trout, Salmo trutta L. // Fish. Physiol. Biochem. V. 3. Iss. 3. 121. https://doi.org/10.1007/BF02180413
  25. Ribera D., Narbonne J.F., Daubeze M., Michel X. 1989. Characterization, tissue distribution and sexual differences of some parameters related to lipid peroxidation in mussels // Mar. Environ. Res. V. 28. P. 279.
  26. Sales C.F., Silva R.F., Amaral M.G.С. et al. 2017. Comparative histology in the liver and spleen of three species of freshwater teleost // Neotrop. Ichthyol. V. 15. Iss. 1. e160041. https://doi.org/10.1590/1982-0224-20160041
  27. Sarrimanolis J., Brooking A., Roberts M., Crockett E.L. 2020. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. V. 250. P. 110505. https://doi.org/10.1016/j.cbpb.2020.110505
  28. Sharma T., Joshi B.D. 1985. Effect of seasonal variation on some haematologic values of hill stream fish Torputitora // J. Adv. Zool. V. 6. Iss. 1. P. 39.
  29. Shulman G.E., Love R.M. 1999. The Biochemical Ecology and Marine Fishes // Adv. Mar. Biol. 36. London: Acad Press. https://doi.org/10.1023/A:1012639928289
  30. Soldatov A.A. 2005a. Physiological aspects of effects of urethane anesthesia on the organism of marine fishes // Hydrobiol. J. V. 41. Iss. 1. P. 113. https://doi.org10.1615/HydrobJ.v41.i1.130
  31. Soldatov A.A. 2005b. Peculiarities of organization and functioning of the fish red blood system (review) // J. Evol. Biochem. Physiol. V. 41. Iss. 3. P. 272. https://doi.org/10.1007/s10893-005-0060-0
  32. Soldatov A.A. 2012. On the issue of classification of the hypoxic states of the aquatic organisms // Hydrobiol. J. V. 48. No 4. P. 3. https://doi.org/10.1615/HydrobJ.v48.i4.10
  33. Soldatov A.A. 2023. Monocyclicity in the function of the erythroid hematopoietic lineage in teleost fish exemplified by Platichthys Flesus (Linnaeus, 1758) // Doklady Biol. Sci. V. 512. Iss. 1. P. 307. https://doi.org/10.1134/S0012496623700564
  34. Wickramasinghe S.N. 1993. Erythropoietin and the human kidney: evidence for an evolutionary link from studies of Salmo gairdneri // Comp. Biochem. Physiol. V. 104A. P. 63. https://doi.org/10.1016/0300-9629(93) 90009-s
  35. Witeska M. 2013. Erythrocytes in teleost fishes: a review // Zool. Ecol. V. 23. Iss. 4. P. 275. https://doi.org/10.1080/21658005.2013.846963
  36. Zinkernagel A.S., Johnson R.S., Nizet V. 2007. Hypoxia inducible factor (HIF) function in innate immunity and infection (review) // J. Mol. Med. 2007. V. 85. P. 1339. https://doi.org/10.1007/s00109-007-0282-2

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Erythroid elements of the blood and head kidney of the flounder: a – EB; b – BN; c – PN (shown by arrow).

下载 (217KB)
3. Fig. 2. Content of immature erythroid forms in the pronephros and blood of the flounder during the annual cycle (distribution polygons): a – total content of immature erythroid forms in the pronephros and blood; b – content of individual immature erythroid forms in the pronephros; c – content of individual immature erythroid forms in the blood; on the abscissa axis – the zero point corresponds to the beginning of the calendar year.

下载 (280KB)
4. Fig. 3. The level of immature erythroid forms in the pronephros (a), blood (b) and the number of circulating erythrocytes in the blood (c) in flounder during the annual cycle (ranking with a step of 3 months). 1 - spawning period, 2 - post-spawning period, 3 - relative functional rest, 4 - pre-spawning period, * - reliable (at p <0.001).

下载 (114KB)
5. Fig. 4. Correlation relationships for the systems: a – “immature erythrocytes of the pronephros – the number of erythrocytes in the blood”, b – “immature erythrocytes of the blood – the number of erythrocytes in the blood”.

下载 (175KB)

版权所有 © The Russian Academy of Sciences, 2024