Decreased Viability and Changes in Sex Ratio in the Offspring of Danio rerio as a Result of Exposure to 2,2 ’ ,5,5 ’ -tetrachlorobiphenyl (PCB 52) on Producers During the Prespawning Period

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studies of the impact of 2,2’,5,5’-tetrachlorobiphenyl (PCB 52) on the body of the freshwater fish Danio rerio ( Hamilton, 1822) in the period preceding their spawning are presented. During this experiment, it is established that exposure to PCB 52 of both males and females leads to the increased mortality of offspring in the early stages of development. It is noticeably predominant in groups in which only male parents are exposed to harmful effects. Shifts in the sex ratio in groups among the surviving offspring with a predominance of females compared to the control also turn out to be significant. This effect is more pronounced in offspring groups in which only female parents were exposed. After measuring PCB 52 concentrations in parent animals using gas chromatography – mass spectrometry, it is found that the PCB 52 content in females is almost twice as high as in males. It is concluded that a decreased vitability and an imbalance in the sex ratio in the offspring has a pronounced sex dependence when exposed to PCB 52 on the body of the animal parents.

Sobre autores

D. Kotsur

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk

Yu. Varakina

Northern (Arctic) Federal University Named After M. V. Lomonosov

Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk

T. Sorokina

Northern (Arctic) Federal University Named After M. V. Lomonosov

Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk

A. Aksenov

Northern (Arctic) Federal University Named After M. V. Lomonosov

Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk

A. Novoselov

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk

V. Chashchin

Northern (Arctic) Federal University Named After M. V. Lomonosov; North-Western State Medical University named after I.I. Mechnikov; Northwestern Scientific Center for Hygiene and Public Health of the Federal Service for Consumer Rights Protection and Human Welfare

Email: mitia.kotsur@yandex.ru
Rússia, Arkhangelsk; Saint-Petersburg; Saint-Petersburg

Bibliografia

  1. Воскобойников Ю.Е . 2005. Эконометрика в Excel: учебное пособие. Новосибирск: Новосиб. гос. арх.-стр. ун-т.
  2. Коцур Д.А., Сорокина Т.Ю., Аксe нов А.С., Чащин В.П. 2023. Danio rerio как модель изучения репродуктивных рисков, связанных с воздействием полихлорированных бифенилов на людей (систематический обзор) // Экология человека. Т. 30. № 4. С. 245. https://doi.org/10.17816/humeco321190
  3. Яглова Н.В., Яглов В.В. 2012. Эндокринные дизрапторы – новое направление исследований в эндокринологии // Вестн. Российской академии медицинских наук. Т. 67. № 3. C. 56. https://doi.org/10.15690/vramn.v67i3.186
  4. Alfonso S., Blanc M., Joassard L. et al. 2019. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture // Aquat. Toxicol. V. 208. P. 29. https://doi.org/10.1016/j.aquatox.2018.12.021
  5. Berg V., Lyche J.L., Karlsson C. et al. 2011. Accumulation and effects of natural mixtures of persistent organic pollutants (POP) in zebrafish after two generations of exposure // J. Toxicol. Environ. Health. Part A. V. 74. № 7–9. P. 407. https://doi.org/10.1080/15287394.2011.550455
  6. Bonde J.P., Toft G., Rylander L. et al. 2008. Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines // Environ. Health Perspect. V. 116. P. 269. https://doi.org/10.1289/ehp.10700
  7. Brion F., Tyler C.R., Palazzi X. et al. 2004. Impacts of 17beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-, larval-, juvenile- and adult-life stages in zebrafish ( Danio rerio ) // Aquat. Toxicol. V. 68. P. 193. https://doi.org/10.1016/j.aquatox.2004.01.022
  8. Broding H.C., Schettgen T., Hillert A. et al. 2008. Subjective complaints in persons under chronic low-dose exposure to lower polychlorinated biphenyls (PCBs) // Int. J. Hyg. Environ. Health. V. 211. № 5–6. P. 648. https://doi.org/10.1016/j.ijheh.2008.02.001
  9. Daouk T., Larcher T., Roupsard F. et al. 2011. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability // Aquat. Toxicol. V. 105. № 3–4. P. 270. https://doi.org/10.1016/j.aquatox.2011.06.021
  10. Erickson M.D., Kaley II R.G. 2011. Applications of polychlorinated biphenyls // Environ. Sci. Pollut. Res. V. 18. № 2. P. 135. https://doi.org/10.1007/s11356-010-0392-1
  11. German A.V., Mamontov A.A., Mamontova E.A. 2023. Polychlorinated biphenyls in the bream Abramis brama from the Volga Reach of the Rybinsk Reservoir: effect of fish age and assessment of risk to human health // Inland Water Biol. V. 16. P. 377. https://doi.org/10.1134/S1995082923020074
  12. Grandjean P., Gronlund C., Kjaer I.M. et al. 2012. Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls // Reprod. Toxicol. V. 34. P. 498. https://doi.org/10.1016/j.reprotox.2012.07.005
  13. Harper C., Lawrence C. 2011. The Laboratory Zebrafish // CRC Press. ISBN: 9780429150159. https://doi.org/10.1201/b13588
  14. He Q.L ., Zhang L ., Liu S.Z . 2021. Effects of polychlorinated biphenyls on animal reproductive systems and epigenetic modifications // Bull. Environ. Contam. Toxicol. V. 107. № 3. P. 398. https://doi.org/10.1007/s00128-021-03285-6
  15. Kossack M.E., Draper B.W. 2019. Genetic regulation of sex determination and maintenance in zebrafish ( Danio rerio ) // Curr. Top. Dev. Biol. V. 134. P. 119. https://doi.org/10.1016/bs.ctdb.2019.02.004
  16. Kraugerud M., Doughty R.W., Lyche J.L. et al. 2012. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish ( Danio rerio ) // Aquat. Toxicol. V. 116. P. 16. https://doi.org/10.1016/j.aquatox.2012.02.031
  17. Lakhmanov D., Varakina Yu., Aksenov A. et al. 2020. Persistent organic pollutants (POPs) in fish consumed by the indigenous peoples from Nenets Autonomous Okrug // Environments. V. 7. № 1. e3. https://doi.org/10.3390/environments7010003
  18. Liu Y., Wang X.N., Wang J. et al. 2016. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy // Environ. Sci. Technol. V. 50. № 6. P. 3154. https://doi.org/10.1021/acs.est.5b03895
  19. Loomis D., Browning S.R., Schenck A.P. et al. 1997. Cancer mortality among electric utility workers exposed to polychlorinated biphenyls // Occup. Environ. Med. V. 54. P. 720. http://dx.doi.org/10.1136/oem.54.10.720
  20. Ludewig G., Robertson L.W. 2013. Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma // Cancer Lett. V. 334. № 1. P. 46. https://doi.org/10.1016/j.canlet.2012.11.041
  21. Lyche J.L., Nourizadeh-Lillabadi R., Almaas C. et al. 2010. Natural mixtures of persistent organic pollutants (pop) increase weight gain, advance puberty, and induce changes in gene expression associated with steroid hormones and obesity in female zebrafish // J. Toxicol. Environ. Health. Part A. V. 73. № 15. P. 1032. https://doi.org/10.1080/15287394.2010.481618
  22. Mills S.A. 3 rd , Thal D.I., Barney J. 2007. A summary of the 209 PCB congener nomenclature // Chemosphere. V. 68. № 9. P. 1603. https://doi.org/10.1016/j.chemosphere.2007.03.052
  23. Moser G.A., McLachlan M.S. 2001. The influence of dietary concentration on the absorption and excretion of persistent lipophilic organic pollutants in the human intestinal tract // Chemosphere. V. 45. № 2. P. 201. https://doi.org/10.1016/S0045-6535(00)00551-8
  24. Njiwa J.R., Müller P., Klein R. 2004. Binary mixture of DDT and Arochlor1254: effects on sperm release by Danio rerio // Ecotoxicol. Environ. Saf. V. 58. № 2. P. 211. https://doi.org/10.1016/j.ecoenv.2003.11.003
  25. Nourizadeh-Lillabadi R., Lyche J.L., Almaas C. et al. 2009. Transcriptional Regulation in Liver and Testis Associated with Developmental and Reproductive Effects in Male Zebrafish Exposed to Natural Mixtures of Persistent Organic Pollutants (POP) // J. Toxicol. Environ. Health. Part A. V. 72. № 3–4. P. 112. https://doi.org/10.1080/15287390802537255
  26. Olsson P.E., Westerlund L., Teh S.J. et al. 1999. Effects of maternal exposure to estrogen and PCB on different life stages of zebrafish ( Danio rerio ) // Ambio. V. 28. № 1. P. 100.
  27. Orn S., Andersson P.L., Forlin L. et al. 1998. The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish ( Danio rerio ) // Arch. Environ. Contam. Toxicol. V. 35. № 1. P. 52. https://doi.org/10.1007/s002449900348
  28. Plísková M., Vondrácek J., Canton R.F. et al. 2005. Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum // Environ. Health Perspect. V. 113. № 10. P. 1277. https://doi.org/10.1289/ehp.7745
  29. Quintaneiro C., Soares A.M.V.M., Costa D. et al. 2019. Effects of PCB-77 in adult zebrafish after exposure during early life stages // J. Environ. Sci. Health. Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control. V. 54. № 5. P. 478. https://doi.org/10.1080/10934529.2019.1568793
  30. Ritter R., Scheringer M., MacLeod M. et al. 2011. Intrinsic human elimination halflives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom // Environ. Health Perspect. V. 119. P. 225. https://doi.org/10.1289/ehp.1002211
  31. Spence R., Gerlach G., Lawrence C., Smith C. 2008. The behaviour and ecology of the zebrafish, Danio rerio // Biol. Rev. V. 83. P. 13. https://doi.org/10.1111/j.1469-185X.2007.00030.x
  32. Sun S.-X., Wu J.-L., Lv H.-B. et al. 2020. Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways // J. Hazard. Mater. V. 394. Article № 122537. https://doi.org/10.1016/j.jhazmat.2020.122537
  33. Wilson C.A., High S.K., McCluskey B.M. et al. 2014. Wild sex in zebrafish: Loss of the natural sex determinant in domesticated strains // Genetics. V. 198. № 3. P. 1291. https://doi.org/10.1534/genetics.114.169284
  34. Wolff M.S., Zeleniuch-Jacquotte A., Dubin N., Toniolo P. 2000. Risk of breast cancer and organo chlorine exposure // Cancer Epidemiol., Biomarkers Prev. V. 9. P. 271.
  35. Xu H., Yang J., Wang Y. et al. 2008. Exposure to 17alpha-ethynylestradiol impairs reproductive functions of both male and female zebrafish ( Danio rerio ) // Aquat. Toxicol. V. 88. № 1. P. 1. https://doi.org/10.1016/j.aquatox.2008.01.020

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024