Asymptotic evaluation of three-dimensional integrals with singularities in application to wave phenomena

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

We consider a three-dimensional Fourier integral in which the exponent in the exponential factor is the product of some phase function and a large parameter. The asymptotics of this integral is sought when the large parameter tends to infinity. In the one-dimensional case, the asymptotics of such an integral is constructed by the points of stationary phase and singularities of the integrand. The three-dimensional case is more complicated: special points such as points of stationary phase in the domain, on singularity, on the crossing of singularities, points of triple crossing of singularities, and also conical points of the singularities, can contribute to the asymptotics. For all these types of singularities, topological conditions for the existence of nonzero asymptotics are constructed, and the asymptotics themselves are derived. The proposed technique is tested on the example of the classical problem of Kelvin waves on the surface of a deep fluid behind a towed body.

作者简介

A. Shanin

Moscow State University

编辑信件的主要联系方式.
Email: laptev97@bk.ru
Москва, 119991 Россия

A. Laptev

Moscow State University

Email: laptev97@bk.ru
Москва, 119991 Россия

参考

  1. Martin P.A. Kelvin's method of stationary phase? // Wave Motion. 2025. V. 134. P. 103481.
  2. Федорюк М.В. Метод перевала. М.: Наука, 1977.
  3. Mironov M.A., Shanin A.V., Korolkov A.I., Kniazeva K.S. Transient processes in a gas/plate structure in the case of light loading // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021. V. 477. P. 20210530.
  4. Assier R.C., Shanin A.V., Korolkov A.I. A contribution to the mathematical theory of diffraction: A note on double fourier integrals // Quarterly Journal of Mechanics and Applied Mathematics. 2022. V. 76. № 1. P. 1–47.
  5. Shanin A.V., Assier R.C., Korolkov A.I., Makarov O.I. Double Floquet-Bloch transforms and the far-field asymptotics of Green's functions tailored to periodic structures // Physical Review B. 2024. V. 110. № 2. P. 024310.
  6. Poincare H. Sur la diffraction des ondes electriques: ? propos d'un article de M. Macdonald // Proceedings of the Royal Society of London. 1904. V. 72. № 477–486. P. 42–52.
  7. Павлов В.И., Сухоруков А.И. Переходное излучение акустических волн // Успехи физ. наук. 1985. Т. 147. № 1. С. 83–115.
  8. Ерофеев В.И., Колесов Д.А., Лисенкова Е.Е. Особенности генерации волн источником, движущимся по одномерной гибкой направляющей, лежащей на упруго-инерционном основании // Акустич. журн. 2016. Т. 62. № 6. С. 639–647.
  9. Руденко О.В., Гусев В.А. Движущийся объект: спектры сигналов пассивной, активной локации и переходное излучение // Акустич. журн. 2020. Т. 66. № 6. С. 599–609.
  10. Thomson W. On ship waves // Proceedings of the institution of mechanical engineers. 1887. V. 38. № 1. P. 409–434.
  11. Lord Kelvin. Deep sea ship-waves // Proceedings of the royal society of Edinburgh. 1906. V. 25. № 2. P. 1060–1084.
  12. Lamb H. LXV. On wave-patterns due to a travelling disturbance // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1916. V. 31. № 186. P. 539–548.
  13. Lamb H. Hydrodynamics. New York, Dover Publications, 1945.
  14. Stoker J.J. Water waves: The mathematical theory with applications. Interscience Publishers, Inc., New York, 1957.
  15. Wehausen J.V., Laitone E.V. Surface waves. Fluid Dynamics/Str?mungsmechanik, Berlin, Heidelberg: Springer Berlin Heidelberg, 1960. P. 446–778.
  16. Liu M., Tao M. Transient ship waves on an incompressible fluid of infinite depth // Physics of Fluids. 2001. V. 13. № 12. P. 3610–3623.
  17. Шабат Б.В. Введение в комплексный анализ. Ч. 2. Функции нескольких переменных. М.: Наука, 1992.
  18. Huybrechs D., Vandewalle S. The construction of cubature rules for multivariate highly oscillatory integrals // Mathematics of computation. 2007. V. 76. № 260. P. 1955–1980.
  19. Chapman C.J. The wavenumber surface in blade–wortex interaction // Proceedings of the IUTAM symposium on diffraction and scattering in fluid mechanics and elasticity, Manchester, UK 2000, ed. by Abrahams I.D., Martin P.A., Simon M.J. 2002. P. 169–178.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025