МикроРНК гиппокампа в механизмах индукции депрессивно-подобного поведения стрессорными воздействиями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Патогенез депрессивных расстройств связывают с дисбалансом нейротрансмиттеров в мозге, эндокринными нарушениями, провоспалительными и нейродегенеративными процессами, поэтому не удивительно, что терапия классическими антидепрессантами, направленная на отдельные системы, зачастую оказывается малоэффективной и, более того, может вызывать нежелательные побочные эффекты. Необходимость поиска новых механизмов патологии с целью возможного их использования в качестве потенциальных мишеней при разработке более действенных терапевтических средств привлекла внимание к малым некодирующим РНК (микроРНК). Эти микроРНК, регулирующие экспрессию целевых генов на посттранскрипционном уровне, вовлекаются в центральной нервной системе в механизмы чувствительности и устойчивости к стрессорным воздействиям – общепринятым факторам риска депрессии. Настоящий обзор посвящен систематизации и анализу результатов, полученных на грызунах, о микроРНК и сигнальных путях их участия в развитии депрессивно-подобного состояния в условиях хронического стресса путем регуляции нейровоспаления, нейрогенеза, cинаптической пластичности и апоптоза в гиппокампе. Результаты проведенного анализа подтверждают представление о сложной регуляторной сети, вовлеченной в инициирование и поддержание этого психоэмоционального расстройства, что может способствовать разработке адекватных терапевтических средств, направленных на борьбу с заболеванием.

Полный текст

Доступ закрыт

Об авторах

Г. Т. Шишкина

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: gtshi@bionet.nsc.ru
Россия, 630090, Новосибирск

Список литературы

  1. Шабанов П.Д., Ващенко В.И. Биологическая роль микроРНК-146a при вирусных инфекциях. Современная стратегия поиска новых безопасных фармакологических средств лечения // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19. № 2. С. 145–174. https://doi.org/10.17816/RCF192145-174
  2. Шишкина Г.Т., Дыгало Н.Н. Нейробиологические основы депрессивных расстройств и действия антидепрессантов // Журн. высш. нервн. деят-сти. 2010. Т. 60. № 2. С. 138–152.
  3. Afridi R., Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences // Cells. 2023. V. 12. № 11. 1521. https://doi.org/10.3390/cells12111521.
  4. Agostini M., Tucci P., Steinert J.R. et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function // Proc. Natl. Acad. Sci. U. S. A. 2011. V. 108. № 52. P. 21099–21104. https://doi.org/10.1073/pnas.1112063108.
  5. Antoniuk S., Bijata M., Ponimaskin E., Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability // Neurosci. Biobehav. Rev. 2019. V. 99. P. 101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002.
  6. Bahi A., Chandrasekar V., Dreyer J.L. Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats // Psychoneuroendocrinology. 2014. V. 46. P. 78–87. https://doi.org/10.1016/j.psyneuen.2014.04.009.
  7. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. V. 116. № 2. P. 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5.
  8. Blumberg M.J., Vaccarino S.R., McInerney S.J. Procognitive Effects of Antidepressants and Other Therapeutic Agents in Major Depressive Disorder: A Systematic Review // J. Clin. Psychiatry. 2020. V. 81. № 4. 19r13200. https://doi.org/10.4088/JCP.19r13200.
  9. Brites D., Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation // Front. Cell. Neurosci. 2015. V. 9. P. 476. https://doi.org/10.3389/fncel.2015.00476.
  10. Cao M.Q., Chen D.H., Zhang C.H., Wu Z.Z. [Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San] // Zhongguo Zhong Yao Za Zhi. 2013. V. 38. № 10. P. 1585–1589.
  11. Castañeda P., Muñoz M., García-Rojo G. et al. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons // J. Neurosci. Res. 2015. V. 93. № 10. P. 1476–1491. https://doi.org/10.1002/jnr.23602.
  12. Chang J., Zhang Y., Shen N., Zhou J., Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation // Exp. Brain Res. 2021. V. 239. № 11. P. 3359–3370. https://doi.org/10.1007/s00221-021-06203-8.
  13. Chao B., Huang S., Pan J., Zhang Y., Wang Y. Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB // Brain Res. Bull. 2020. V. 157. P. 69–76. https://doi.org/10.1016/j.brainresbull.2020.01.008.
  14. Cole J., Costafreda S.G., McGuffin P., Fu C.H. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies // J. Affect. Disord. 2011. V. 134. № 1–3. P. 483–487. https://doi.org/10.1016/j.jad.2011.05.057.
  15. Dai J., Pan J.Y., Liao N. et al. Influence of miR-155 on behaviors of depression mice through regulating Wnt/β-catenin signaling pathway // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24. № 3. P. 1398–1407. https://doi.org/10.26355/eurrev_202002_20197.
  16. Dantzer R., O'Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: when the immune system subjugates the brain // Nat. Rev. Neurosci. 2008 V. 9. № 1. P. 46–56. https://doi.org/10.1038/nrn2297.
  17. De Assis G.G., Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence // Cells. 2024. V. 13. № 10. P. 880. https://doi.org/10.3390/cells13100880.
  18. Duman R.S., Aghajanian G.K. Synaptic dysfunction in depression: potential therapeutic targets // Science. 2012. V. 338. № 6103. P. 68–72. https://doi.org/10.1126/science.1222939.
  19. Duman R.S., Monteggia L.M. A neurotrophic model for stress-related mood disorders // Biol. Psychiatry. 2006. V. 59. № 12. P. 1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013.
  20. Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications // Dialogues Clin. Neurosci. 2014. V. 16. № 1. P. 43–61. https://doi.org/10.31887/DCNS.2014.16.1/ydwivedi.
  21. Dwivedi Y. microRNA-124: a putative therapeutic target and biomarker for major depression // Expert. Opin. Ther. Targets. 2017. V. 21. № 7. P. 653–656. https://doi.org/10.1080/14728222.2017.1328501.
  22. Fan C., Li Y., Lan T. et al. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression // Mol. Ther. 2022. V. 30. № 3. P. 1300–1314. https://doi.org/10.1016/j.ymthe.2021.11.006.
  23. Fries G.R., Zhang W., Benevenuto D., Quevedo J. MicroRNAs in Major Depressive Disorder // Adv Exp Med Biol. 2019. V. 1118. P. 175–190. https://doi.org/10.1007/978-3-030-05542-4_9.
  24. Gruzdev S.K., Yakovlev A.A., Druzhkova T.A., Guekht A.B., Gulyaeva N.V. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia // Cell. Mol. Neurobiol. 2019. V. 39. № 6. P. 729–750. https://doi.org/10.1007/s10571-019-00684-6.
  25. Guan W., Wu X.Y., Jin X., Sheng X.M., Fan Y. miR-204-5p Plays a Critical Role in the Pathogenesis of Depression and Anti-depression Action of Venlafaxine in the Hippocampus of Mice // Curr. Med. Chem. 2024. V. 31. № 22. P. 3412–3425. https://doi.org/10.2174/0929867330666230623163315.
  26. Guan W., Xu D.W., Ji C.H. et al. Hippo-campal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF // Pharmacol. Res. 2021. V. 174. 105932. https://doi.org/10.1016/j.phrs.2021.105932.
  27. Gulyaeva N.V. Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage // Neurochem. Res. 2019. V. 44. № 6. P. 1306–1322. https://doi.org/10.1007/s11064-018-2662-0.
  28. Hall S., Parr B.A., Hussey S. et al. The neurodegenerative hypothesis of depression and the influence of antidepressant medications // Eur. J. Pharmacol. 2024. V. 983. 176967. https://doi.org/10.1016/j.ejphar.2024.176967.
  29. He J., Xie P., An X.Q. et al. LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF // Curr. Med. Sci. 2024. V. 44. № 5. P. 971–986. https://doi.org/10.1007/s11596-024-2917-8.
  30. Higuchi F., Uchida S., Yamagata H. et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice // J. Neurosci. 2016. V. 36. № 27. P. 7253–7267. https://doi.org/10.1523/JNEUROSCI.0319-16.2016.
  31. Huan Z., Mei Z., Na H. et al. lncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the miR-155/BDNF Axis // Neurochem. Res. 2021. V. 46. № 4. P. 935–944. https://doi.org/10.1007/s11064-021-03234-z.
  32. Huang C., Wang Y., Wu Z. et al. miR-98-5p plays a critical role in depression and antidepressant effect of ketamine // Transl. Psychiatry. 2021. V. 11. № 1. P. 454. https://doi.org/10.1038/s41398-021-01588-0.
  33. Huang P., Wei S., Luo M. et al. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway // Ann. Transl. Med. 2021. V. 9. № 20. P. 1594. https://doi.org/10.21037/atm-21-5149.
  34. Huang Y., Jin Y., Yao S., Nan G., Mao Y. LncRNA NEAT1 Inhibits Neuronal Apoptosis and Induces Neuronal Viability of Depressed Rats Via microRNA-320-3p/CRHR1 Axis // Neurochem. Res. 2024. V. 49. № 9. P. 2352–2363. https://doi.org/10.1007/s11064-021-03508-6.
  35. Huang Y.L., Zeng N.X., Chen J. et al. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress // Neural. Regen. Res. 2020. V. 15. № 6. P. 1150–1159. https://doi.org/10.4103/1673-5374.270414.
  36. Ilieva M.S. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis // Cells. 2024. V. 13. № 12. P. 1063. https://doi.org/10.3390/cells13121063.
  37. Krishnan V., Nestler E.J. The molecular neurobiology of depression // Nature. 2008. V. 455. № 7215. P. 894–902. https://doi.org/10.1038/nature07455.
  38. Lan T., Li Y., Fan C. et al. MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway // J. Neuroinflammation. 2021. V. 18. № 1. P. 243. https://doi.org/10.1186/s12974-021-02299-5.
  39. Li C., Wang F., Miao P. et al. miR-138 Increases Depressive-Like Behaviors by Targeting SIRT1 in Hippocampus // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 949–957. https://doi.org/10.2147/NDT.S237558.
  40. Li S., Ma H., Yuan X. et al. MicroRNA-382-5p Targets Nuclear Receptor Subfamily 3 Group C Member 1 to Regulate Depressive-Like Behaviors Induced by Chronic Unpredictable Mild Stress in Rats // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 2053–2061. https://doi.org/10.2147/NDT.S243920.
  41. Li Y., Fan C., Wang L. et al. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies // J. Clin. Invest. 2021. V. 131. № 16. e148853. https://doi.org/10.1172/JCI148853.
  42. Li Y., Li S., Yan J. et al. miR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016. V. 65. P. 96–103. 10.1016/j.pnpbp.2015.09.004.
  43. Li Y., Fan C., Gao R. et al. Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat // Neuropharmacology. 2021. V. 194. 108618. https://doi.org/10.1016/j.neuropharm.2021.108618.
  44. Lian N., Niu Q., Lei Y. et al. MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons // Cell. Cycle. 2018. V. 17. № 24. P. 2745–2755. https://doi.org/10.1080/15384101.2018.1556060.
  45. Liu C.P., Zhong M., Sun J.X. et al. miR-146a reduces depressive behavior by inhibiting microglial activation // Mol. Med. Rep. 2021. V. 23. № 6. P. 463. https://doi.org/10.3892/mmr.2021.12102.
  46. Liu Q., Sun N.N., Wu Z.Z., Fan D.H., Cao M.Q. Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways // Neural. Regen. Res. 2018. V. 13. № 5. P. 837–845. https://doi.org/10.4103/1673-5374.232478.
  47. Liu S., Liu Q., Ju Y., Liu L. Downregulation of miR-383 reduces depression-like behavior through targeting Wnt family member 2 (Wnt2) in rats // Sci. Rep. 2021. V. 11. № 1. P. 9223. https://doi.org/10.1038/s41598-021-88560-6.
  48. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation // Signal Transduct. Target Ther. 2017. V. 2. 17023. https://doi.org/10.1038/sigtrans.2017.23.
  49. Lopizzo N., Zonca V., Cattane N., Pariante C.M., Cattaneo A. miRNAs in depression vulnerability and resilience: novel targets for preventive strategies // J. Neural. Transm. (Vienna). 2019. V. 126. № 9. P. 1241–1258. https://doi.org/10.1007/s00702-019-02048-2.
  50. Lou D., Wang J., Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation // Mol. Cell. Probes. 2019. V. 48. 101470. https://doi.org/10.1016/j.mcp.2019.101470.
  51. Lv M., Li J., Gao X., Hao Y., Zhao F. Decreased expression of microRNA-17 in hippocampal tissues and blood from mice with depression up-regulates the expression of PAI-1 mRNA and protein // Braz. J. Med. Biol. Res. 2020. V. 53. № 10. e8826. https://doi.org/10.1590/1414-431X20208826.
  52. Ma X., Li Q., Chen G. et al. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression // Neurochem. Res. 2023. V. 48. № 8. P. 2514–2530. https://doi.org/10.1007/s11064-023-03926-8.
  53. Ma Z.Y., Chen F., Xiao P., Zhang X.M., Gao X.X. Silence of MiR-9 protects depression mice through Notch signaling pathway // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. № 11. P. 4961–4970. https://doi.org/10.26355/eurrev_201906_18087.
  54. Malhi G.S., Mann J.J. Depression // Lancet. 2018. V. 392. № 10161. P. 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2.
  55. McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain // Physiol Rev. 2007. V. 87. № 3. P. 873–904. https://doi.org/10.1152/physrev.00041.2006.
  56. Mishima T., Mizuguchi Y., Kawahigashi Y., Takizawa T., Takizawa T. RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS // Brain Res. 2007. V. 1131. № 1. P. 37–43. https://doi.org/10.1016/j.brainres.2006.11.035.
  57. Młyniec K., Budziszewska B., Holst B., Ostachowicz B., Nowak G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus // Int. J. Neuropsychopharmacol. 2014. V. 18. № 3. pyu002. https://doi.org/10.1093/ijnp/pyu002.
  58. Morris R., Kershaw N.J., Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway // Protein Sci. 2018. V. 27. № 12. P. 1984–2009. https://doi.org/10.1002/pro.3519.
  59. Myers K.R., Yu K., Kremerskothen J., Butt E., Zheng J.Q. The Nebulin Family LIM and SH3 Proteins Regulate Postsynaptic Development and Function // J. Neurosci. 2020. V. 40. № 3. P. 526–541. https://doi.org/10.1523/JNEUROSCI.0334-19.2019.
  60. Pierouli K., Papageorgiou L., Mitsis T. et al. Role of microRNAs and long non-coding RNAs in glucocorticoid signaling (Review) // Int. J. Mol. Med. 2022. V. 50. № 6. P. 147. https://doi.org/10.3892/ijmm.2022.5203.
  61. Rahmani S., Kadkhoda S., Ghafouri-Fard S. Synaptic plasticity and depression: the role of miRNAs dysregulation // Mol. Biol. Rep. 2022. V. 49. № 10. P. 9759–9765. https://doi.org/10.1007/s11033-022-07461-7.
  62. Rashidi S.K., Kalirad A., Rafie S., Behzad E., Dezfouli M.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus // Front. Mol. Neurosci. 2023. V. 16. 1226413. https://doi.org/10.3389/fnmol.2023.1226413.
  63. Rastegar-Moghaddam S.H., Ebrahimzadeh-Bideskan A., Shahba S., Malvandi A.M., Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target // Cell. Mol. Neurobiol. 2023. V. 43. № 2. P. 455–467. https://doi.org/10.1007/s10571-022-01200-z.
  64. Roy B., Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response // Neurosci. Biobehav. Rev. 2023. V. 146. 105040. https://doi.org/10.1016/j.neubiorev.2023.105040.
  65. Russell G., Lightman S. The human stress response // Nat. Rev. Endocrinol. 2019. V. 15. № 9. P. 525–534. https://doi.org/10.1038/s41574-019-0228-0.
  66. Schratt G.M., Tuebing F., Nigh E.A. et al. A brain-specific microRNA regulates dendritic spine development // Nature. 2006. V. 439. № 7074. P. 283–289. https://doi.org/10.1038/nature04367.
  67. Shen J., Zhang P., Li Y. et al. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours // J. Cell. Mol. Med. 2021. V. 25. № 14. P. 7028–7038. https://doi.org/10.1111/jcmm.16716.
  68. Shi L.S., Ji C.H., Tang W.Q. et al. Hippocampal miR-124 Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF in a Chronic Social Defeat Stress Model of Depression // Curr. Neurovasc. Res. 2022. V. 19. № 2. P. 210–218. https://doi.org/10.2174/1567202619666220713105306.
  69. Shi Y., Wang Q., Song R., Kong Y., Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers // EBioMedicine. 2021. V. 71. 103569. https://doi.org/10.1016/j.ebiom.2021.103569.
  70. Shimba A., Ikuta K. Control of immunity by glucocorticoids in health and disease // Semin. Immunopathol. 2020. V. 42. № 6. P. 669–680. https://doi.org/10.1007/s00281-020-00827-8.
  71. Si L., Wang Y., Liu M., Yang L., Zhang L. Expression and role of microRNA-212/nuclear factor I-A in depressive mice // Bioengineered. 2021. V. 12. № 2. P. 11520–11532. https://doi.org/10.1080/21655979.2021.2009964.
  72. Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression // Psychol. Bull. 2014. V. 140. № 3. P. 774–815. https://doi.org/10.1037/a0035302.
  73. Stepanichev M., Dygalo N.N., Grigoryan G., Shishkina G.T., Gulyaeva N. Rodent models of depression: Neurotrophic and neuroinflam-matory biomarkers // Biomed. Res. Int. 2014. V. 2014. 932757. https://doi.org/10.1155/2014/932757.
  74. Su M., Hong J., Zhao Y., Liu S., Xue X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression // Mol. Med. Rep. 2015. V. 12. № 4. P. 5399–406. https://doi.org/10.3892/mmr.2015.4104.
  75. Sun Z., Zhan H., Wang C., Guo P. Shanzhiside methylester protects against depression by inhibiting inflammation via the miRNA-155-5p/SOCS1 axis // Psychopharmacology (Berl). 2022. V. 239. № 7. P. 2201–2213. https://doi.org/10.1007/s00213-022-06107-7.
  76. Taganov K.D., Boldin M.P., Chang K.J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proc. Natl. Acad. Sci. U. S. A. 2006. V. 103. № 33. P. 12481–12486. https://doi.org/10.1073/pnas.0605298103.
  77. Tang M.M., Lin W.J., Zhang J.T., Zhao Y.W., Li Y.C. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation // Brain Behav. Immun. 2017. V. 66. P. 322–331. https://doi.org/10.1016/j.bbi.2017.05.013.
  78. Tang Y., Yang J., Ye C. et al. miR-182 mediated the inhibitory effects of NF-κB on the GPR39/CREB/BDNF pathway in the hippocampus of mice with depressive-like behaviors // Behav. Brain Res. 2022. V. 418. 113647. https://doi.org/10.1016/j.bbr.2021.113647.
  79. Troubat R., Barone P., Leman S. et al. Neuro-inflammation and depression: A review // Eur. J. Neurosci. 2021. V. 53. № 1. P. 151–171. https://doi.org/10.1111/ejn.14720.
  80. Tsai S.J. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression // Oncotarget. 2017. V. 8. № 68. P. 113258–113268. https://doi.org/10.18632/oncotarget.19935.
  81. Vyas S., Rodrigues A.J., Silva J.M. et al. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration // Neural Plast. 2016. V. 2016. 6391686. https://doi.org/10.1155/2016/6391686.
  82. Wang C., Li Y., Yi Y. et al. Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats // J. Neuroinflammation. 2022. V. 19. № 1. P. 283. https://doi.org/10.1186/s12974-022-02645-1.
  83. Wang G., Liu Y., Zhu X. et al. Knockdown of miRNA-134-5p rescues dendritic deficits by promoting AMPK-mediated mitophagy in a mouse model of depression // Neuropharmacology. 2022. V. 214. 109154. https://doi.org/10.1016/j.neuropharm.2022.109154.
  84. Wang S.S., Mu R.H., Li C.F. et al. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017. V. 79. Pt B. P. 417–425. https://doi.org/10.1016/j.pnpbp.2017.07.024.
  85. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage // Neurobiol. Stress. 2016. V. 6. P. 78–93. https://doi.org/10.1016/j.ynstr.2016.08.002.
  86. Woodbury M.E., Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration // J. Neuroimmune Pharmacol. 2014. V. 9. № 2. P. 92–101. https://doi.org/10.1007/s11481-013-9501-5.
  87. Wu X., Zhang Y., Wang P. et al. Clinical and preclinical evaluation of miR-144-5p as a key target for major depressive disorder // CNS Neurosci. Ther. 2023. V. 29. № 11. P. 3598–3611. https://doi.org/10.1111/cns.14291.
  88. Xian X., Cai L.L., Li Y. et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression // J. Nanobiotechnology. 2022. V. 20. № 1. P. 122. https://doi.org/10.1186/s12951-022-01332-w.
  89. Xin C., Xia J., Liu Y., Zhang Y. MicroRNA-202-3p Targets Brain-Derived Neurotrophic Factor and Is Involved in Depression-Like Behaviors // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 1073–1083. https://doi.org/10.2147/NDT.S241136.
  90. Yan X., Zeng D., Zhu H. et al. MiRNA-532-5p Regulates CUMS-Induced Depression-Like Behaviors and Modulates LPS-Induced Proinflammatory Cytokine Signaling by Targeting STAT3 // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 2753–2764. https://doi.org/10.2147/NDT.S251152.
  91. Yang W., Liu M., Zhang Q. et al. Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF // Curr. Neurovasc. Res. 2020. V. 17. № 2. P. 196–203. https://doi.org/10.2174/1567202617666200319141755.
  92. Yi L.T., Zhu J.X., Dong S.Q. et al. miR-34a induces spine damages via inhibiting synaptotagmin-1 in depression // Neurobiol. Stress. 2020. V. 13. 100243. https://doi.org/10.1016/j.ynstr.2020.100243.
  93. Yu H., Li X., Zhang Q. et al. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus // Commun. Biol. 2024. V. 7. № 1. P. 944. https://doi.org/10.1038/s42003-024-06639-y.
  94. Zeng D., Shi Y., Li S. et al. miR-124 Exacerbates depressive-like behavior by targeting Ezh2 to induce autophagy. Behav. Pharmacol. 2023. V. 34. № 2–3. P. 131–140. https://doi.org/10.1097/FBP.0000000000000716.
  95. Zhai X., Liu J., Ni A., Ye J. MiR-497 promotes microglia activation and proinflammatory cytokines production in chronic unpredictable stress-induced depression via targeting FGF2 // J. Chem. Neuroanat. 2020. V. 110. 101872. https://doi.org/10.1016/j.jchemneu.2020.101872.
  96. Zheng Y.B., Sheng X.M., Jin X., Guan W. MiR-182-5p: A Novel Biomarker in the Treatment of Depression in CSDS-Induced Mice // Int. J. Neuropsychopharmacol. 2024. V. 27. № 1. pyad064. https://doi.org/10.1093/ijnp/pyad064.
  97. Zhou M., Wang M., Wang X. et al. Abnormal Expression of MicroRNAs Induced by Chronic Unpredictable Mild Stress in Rat Hippocampal Tissues. Mol. Neurobiol. 2018. V. 55. № 2. P. 917–935. https://doi.org/10.1007/s12035-016-0365-6.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025