Investigation of medium entropy alloys obtained by electric arc welding with powder wires
- Authors: Khudaev K.A.1, Kryukov R.E.1, Mikhno A.R.1, Perov S.S.1
-
Affiliations:
- Siberian State Industrial University
- Issue: No 4 (2025)
- Pages: 365–378
- Section: Articles
- URL: https://kazanmedjournal.ru/0235-0106/article/view/689779
- DOI: https://doi.org/10.31857/S0235010625040082
- ID: 689779
Cite item
Abstract
In modern conditions of intensive technology development and constantly increasing requirements for materials in industry, there is an urgent need to develop fundamentally new metal alloys with special performance properties. Classical materials, including various grades of steels, aluminum and titanium alloys, in many cases no longer meet modern standards in such key parameters as strength, wear resistance, corrosion and thermal stability. In this context, multicomponent alloys with an increased entropy component containing five or more basic elements in close atomic ratios are of particular importance. Due to the unique effect of high configuration entropy, these materials have a number of outstanding physico-chemical characteristics: increased mechanical strength, exceptional resistance to oxidation at high temperatures, as well as excellent wear resistance. However, significant technological difficulties in obtaining high-entropy alloys, combined with the high cost of the initial components necessary to create equal-atomic compositions, have led to increased scientific interest in the study of alloys with an average entropy level (SES), which represent a more affordable alternative. This paper considers the development and investigation of a multicomponent alloy of the Cr-Ni-Co-Fe-Mo system, obtained by electric arc welding using specialized powder wire. The main attention is paid to the study of microstructural features, the distribution of microhardness, and the determination of nonmetallic inclusions in the deposited layer. The choice of this system of elements is due to their complementary properties: chromium (Cr) provides increased corrosion resistance, nickel (Ni) improves ductility and heat resistance, cobalt (Co) increases heat resistance, iron (Fe) serves as the base of the alloy, and molybdenum (Mo) promotes hardening at high temperatures. The combination of these elements makes it possible to obtain a material with a unique balance of characteristics, which makes it promising for use in the aerospace industry, energy, oil and gas industry and other high-tech fields. In the course of the study, comprehensive tests were carried out, including metallographic analysis and microhardness measurements using the Vickers method. Special attention is paid to the identification and classification of non-metallic inclusions, since their presence can significantly affect the operational properties of the material. The results obtained allow us to draw conclusions about the prospects for further study and optimization of this class of alloys for industrial implementation.
Full Text

About the authors
K. A. Khudaev
Siberian State Industrial University
Author for correspondence.
Email: xudaev99@bk.ru
Russian Federation, Novokuznetsk
R. E. Kryukov
Siberian State Industrial University
Email: xudaev99@bk.ru
Russian Federation, Novokuznetsk
A. R. Mikhno
Siberian State Industrial University
Email: xudaev99@bk.ru
Russian Federation, Novokuznetsk
S. S. Perov
Siberian State Industrial University
Email: xudaev99@bk.ru
Russian Federation, Novokuznetsk
References
- Mutsinov S.A., Kalinichenko V.A., Andrushevich A.A. Perspektivy primeneniya pokrytiy dlya uluchsheniya poverkhnostnykh svoystv litykh kompozitsionnykh materialov [Prospects of using coatings to improve the surface properties of cast composite materials] // Lit’ye i metallurgiya [Casting and Metallurgy]. 2024. № 2. pp. 63–71. [In Russian]
- Dresvyannikov A.F., Kolpakov M.E., Ermolaeva E.A. Fizikokhimiya vysokoentropiynykh splavov: teoriya i prakticheskiye prilozheniya [Physicochemistry of High-Entropy Alloys: Theory and Practical Applications] // Vestnik tekhnologicheskogo universiteta [Bulletin of the Technological University]. 2023. № 10. pp. 5–19. [In Russian]
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. Vol. 375–377. P. 213–218. https://doi.org/10.1016/j.msea. 2003.10.257
- Yeh Jien-Wei, Lin Su-Jien, Chin Tsung-Shune, Gan JonYiew, Chen Swe-Kai, Shun Tao-Tsung, Tsau Chung Huei, Chou Shou-Yi. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements // Metallurgical and Materials Transactions A. 2004. 35. pp. 2533–2536.
- Zhang Yong, Zuo Ting Ting, Tang Zhi, Gao M.C., Dahmen K.A., Liaw P.K., Lu Zhao Ping. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014. 61. pp. 1–93.
- Butler T.M., Weaver M.L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys // Metals. 2016. 6. № 9. 222.
- Daoud H.M., Manzoni A.M., Völkl R., Wanderka N., Glatzel U. Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air // Advanced Engineering Materials. 2015. 17. № 8. pp. 1134–1141.
- Bataeva Z.B., Ruktuev A.A., Ivanov I.V. et al. Obzor issledovaniy splavov, razrabotannykh na osnove entropiynogo podkhoda [Review of studies of alloys developed based on the entropy approach] // Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty) [Metal processing (technology, equipment, tools)]. 2021. 23. № 2. pp. 116–146. [In Russian]
- Stepchenkov A.K., Makarov A.V., Volkova E.G. et al. Vliyaniye dobavok karbida i borida vol’frama na strukturu i mikrotverdost’ ekviatomnogo CrFeNi-pokrytiya, sformirovannogo korotkoimpul’snoy lazernoy naplavkoy [Effect of tungsten carbide and boride additives on the structure and microhardness of equiatomic CrFeNi coating formed by short-pulse laser cladding] // Frontier Materials & Technologies. 2024. № 1. pp. 83–94. [In Russian]
- Stepanyuk N.A. Vliyaniye oblucheniya ionami geliya na fazovyy sostav i mikrostrukturu poverkhnosti vysokoentropiynogo splava CoCrFeMnNi [Effect of helium ion irradiation on the phase composition and surface microstructure of high-entropy CoCrFeMnNi alloy] / V sbornike: 78-ya nauchnaya konferentsiya studentov i aspirantov Belorusskogo gosudarstvennogo universiteta. Materialy konferentsii. V 3-kh chastyakh [In the collection: 78th scientific conference of students and postgraduates of the Belarusian State University. Conference materials. In 3 parts]. Minsk. 2021. pp. 149–152. [In Russian]
- Arif Z.U., Khalid M.Y., Rashid A.A., Rehman E.U., Atif M. Laser deposition of high-entropy alloys: A comprehensive review // Optics & Laser Technology. 2022. 145. 107447.
- Khrushchov M.M. Iznosostoykost’ i struktura tverdykh naplavok. M.: Mashinostroyeniye. [Wear resistance and structure of hard surfacings. Moscow: Mechanical Engineering]. 1971. [In Russian]
- Sidorov A.I. Vosstanovleniye detaley mashin napyleniyem i naplavkoy. M.: Mashinostroyeniye [Restoration of machine parts by spraying and surfacing. Moscow: Mechanical Engineering]. 1987. [In Russian]
- C. Wang, K.F. Lin, Y.L. Zhao, T. Yang, T.L. Zhang, W.H. Liu, C.H. Hsueh, H.C. Lin, J.J. Kai, C.T. Liu. Martensitic transformation and mechanical behavior of a medium-entropy alloy // Materials Science and Engineering A. 2020. 786. 139371.
- C.Zhao, W.Xiaoli, W.Weili, L.Xin, Y.Haiou, J.Ze, C.Lianyang, W.Haibin, L.Wenhui, L.Nan. Engineering fine grains, dislocations and precipitates for enhancing the strength of TiB2-modified CoCrFeMnNi high-entropy alloy using Laser Powder Bed Fusion // Journal of Materials Research and Technology. 2023. 26. P. 1198–1213.
- He Junyang, Makineni S.K., Lu Wenjun, Shang Yuanyuan, Lu Zhaoping, Li Zhiming, Gault B. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy // Scripta Materialia. 2020. 175. P. 1–6.
- Ren Mengfei, Li Ruifen, Zhang Xiaoqiang, Gu Jiayang, Jiao Chen. Effect of WC particles preparation method on microstructure and properties of laser cladded Ni60-WC coatings // Journal of Materials Research and Technology. 2023. 22. P. 605–616.
- Dash T., Nayak B.B. Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product // Ceramics International. 2016. 42. № 1-A. P. 445–459.
- Guseva T.P., Gromov V.E., Gostevskaya A.N., et al. Struktura i svoystva naplavki novoy bystrorezhushchey stali R2M9 [Structure and properties of the surfacing of the new high-speed steel P2M9] // Aktual’nyye problemy prochnosti: Materialy LXVIII mezhdunarodnoy nauchnoy konferentsii [Actual problems of strength: Proceedings of the LXVIII international scientific conference]. Vitebsk, May 27-31, 2024. Minsk: IVC of the Ministry of Finance. 2024. P. 5. [In Russian]
- Erofeev V.K., Vorobyova G.A. Issledovaniye vliyaniya aerotermoakusticheskoy obrabotki na strukturu instrumental’nykh bystrorezhushchikh staley i splavov [Study of the effect of aerothermoacoustic treatment on the structure of tool high-speed steels and alloys] // Metalloobrabotka [Metalworking]. 2009. № 6 (54). P. 34–40. [In Russian]
- Chapaykin A.S., Gromov V.E., Cherepanova G.I., Minenko S.S. Issledovaniye svoystv i struktury naplavki bystrorezhushchey stali posle vysokotemperaturnogo otpuska i EPO [Study of the properties and structure of high-speed steel surfacing after high-temperature tempering and EPO] // Science and youth: problems, searches, solutions: Proceedings of the All-Russian scientific conference of students, graduate students and young scientists. Novokuznetsk, May 15–16, 2024. Novokuznetsk: Siberian State Industrial University. 2024. P. 24–27. [In Russian]
Supplementary files
