The nature of exothermic reactions in highly dispersed initiating explosives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Highly dispersed initiating explosives and igniting compositions based on them in the form of an aqueous suspension and paste have been obtained, which can significantly improve the safety of the technological process of equipping pyrotechnic initiation devices. The properties of the obtained explosives are analyzed, and the scope of their application in the form of film pyroelements is proposed. A visual - thermal analysis of the exothermic transformation in film pyroelements under normal conditions has been performed. It has been shown that high-temperature exothermic reactions do not occur in the form of a detonation wave, but in the form of stationary layered combustion at the rate of 20 to 200 mm/s under normal conditions, with intense release of dispersed products and flames.

Full Text

Restricted Access

About the authors

R. R. Dimukhametov

Kazan National Research Technological University

Author for correspondence.
Email: dim_rus2000@mail.ru
Russian Federation, Kazan

A. P. Sharova

Kazan National Research Technological University

Email: dim_rus2000@mail.ru
Russian Federation, Kazan

A. A. Knutov

Kazan National Research Technological University

Email: dim_rus2000@mail.ru
Russian Federation, Kazan

D. S. Ivanova

Kazan National Research Technological University

Email: dim_rus2000@mail.ru
Russian Federation, Kazan

V. V. Plakhov

Kazan National Research Technological University

Email: dim_rus2000@mail.ru
Russian Federation, Kazan

References

  1. Matyas R., Pachman J. Primary Explosives. Berlin-Heidelberg: Springer-Werlag, 2013.
  2. Gelfman M.I., Kovalevich O.V., Yustratov V.P. Colloid chemistry. St. Petersburg: Lan, 2004. [In Russian].
  3. Bagal L.I. Chemistry and technology of initiating explosives. M.: Mechanical Engineering, 1975. [In Russian].
  4. Abdullin I.A., Dimukhametov R.R., Belkova O.P., Fadeev D.V., Ageev V.N. et al. // Ammunitions and high-energy condensed systems. 2016. Special Issue № 3. P. 48.
  5. Akhmedshina V.A. Bazotov V.Ya. Crystallization of energy-saturated compounds from solutions. Training manual. Kazan: Kazan National Research Technological University, 2012.
  6. Belyaev A.F., Belyaeva A.E. // The USSR Academy of Science Reports. 1946. V. 52. P. 507.
  7. Danilov Yu.N., Ilyushin M.A., Tselinsky I.V. Industrial explosives. Part I. Initiating explosives. Text of lectures. St. Petersburg: SPbGTI (TU), 2001.
  8. Andreev K.K. Thermal decomposition and combustion of explosives. 2nd ed. M.: Science, 1966 [In Russian].
  9. Svetlov B.S., Vogelzang A.E. // Сombust. Explos. Shock Waves. 1969. V. 5. № 1. P. 67.
  10. Vogelzang A.E., Egorshev V.Yu., Pimenov A.Yu., Sinditsky V.P., Saklanty A.R. et al. // The USSR Academy of Science Reports. 1985. V. 282. № 6. P. 1449.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrograph of a sample of highly dispersed LS.

Download (708KB)
3. Fig. 2. Micrographs of samples of highly dispersed IVV: a – PS, b – BS, c – DDNP.

Download (3MB)
4. Fig. 3. a — Micrograph of a film of highly dispersed IVV on the surface of a cardboard substrate: a layer of highly dispersed IVV (1); a cardboard substrate measuring 100×10×1 mm (2); tungsten-rhenium thermocouple (3); b — a typical temperature curve of the exothermic decomposition of highly dispersed IVV.

Download (830KB)
5. Fig. 4. Photographs of high-speed shooting of combustion of films of the studied highly dispersed IVV samples on the surface of a cardboard substrate: a – DDNP, b – BS, c – LS.

Download (419KB)
6. Fig. 5. Degree of substitution of the amine group by the diazo group in picramic acid.

Download (246KB)
7. Fig. 6. Dependence of the combustion rate of films based on highly dispersed DDNP on the content of diazo nitrogen in the molecule.

Download (631KB)
8. Fig. 7. The process of elimination of nitrogen atoms in the DDNP molecule.

Download (101KB)
9. Рис. 8. а – Результаты синхронного термического (ТГА/ДСК) анализа образца высокодисперсного DDNP, б – углеродный остаток (темного цвета) на поверхности картона после горения высокодисперсного DDNP.

Download (142KB)

Copyright (c) 2025 Russian Academy of Sciences