Chain Processes in the Chapman Cycle
- Authors: Larin I.K.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Issue: Vol 44, No 6 (2025)
- Pages: 109-114
- Section: Химическая физика атмосферных явлений
- URL: https://kazanmedjournal.ru/0207-401X/article/view/686564
- DOI: https://doi.org/10.31857/S0207401X25060097
- ID: 686564
Cite item
Abstract
Numerical data are presented on the chain length of the so-called zero oxygen cycle, i.e. such a cycle in which ozone destruction does not occur as in purely catalytic cycles. The data correspond to the conditions of June 2000 at latitude 50 N in the altitude range of 15–55 km. Calculations were performed using the interactive two-dimensional SOCRATES model. Forecasts of atmospheric greenhouse gas content of the Intergovernmental Panel on Climate Change RCP 4.5 for the year 2000 were used as initial data for calculations. Calculations of the chain length of zero cycles were carried out using the algorithm proposed earlier by the author for determining the speed of the limiting stage of the catalytic cycle.
Full Text

About the authors
I. K. Larin
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: iklarin@narod.ru
Russian Federation, Moscow
References
- Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1182. https://doi.org/10.1134/S1990793122060239
- Morozov I. I., Vasiliev E. S., Volkov N. D. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 5. P. 877. https://doi.org/10.1134/S1990793122050220
- Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 503. https://doi.org/10.1134/S1990793123020240
- Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 234. https://doi.org/10.1134/S1990793123010141
- Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S1990793124700246
- Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
- Larin I.K., Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 675. https://doi.org/10.1134/S1990793124700258
- Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
- Purmal’ A.P. A, B, C…of chemical kinetics. Moscow: Akademkniga, 2004.
- Larin I. // Atm. Climate Sci. 2013. V. 3. № 1. P. 141. https://doi.org/10.4236/acs.2013.31016
- Chapman S. // Met. Roy. Met. Soc. 1930. V. 3. P. 103.
- URL: http://acd.ucar.edu/models/SOCRATES
- URL:https://www1.cmos.ca/abstracts/abstract_print_view.asp?absId=5371
- Larin I.K., Kuskov M.L. // Russ. J. Phys. Chem. B. 2014. V. 8. № 2. P. 254. https://doi.org/10.1134/S199079311402016X
- Larin I.K. Chemical physics of the ozone layer. Moscow: RAS, 2017.
- Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Third revised and enlarged edition. Springer, 2005.
- Shimazaki T. Minor constituents in the middle atmosphere. Tokyo: Terra Scientific Publishing Company, 1985.
- Larin I.K. // Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 791. https://doi.org/10.1134/S1990793118040279
Supplementary files
