Metal-Organic Frameworks of Cobalt(II) with 4,7-Di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and Aromatic Dicarboxylic Acids: Synthesis, Crystal Structures, and Magnetic Properties
- Autores: Pavlov D.I.1,2, Lavrov A.N.2, Samsonenko D.G.2, Potapov A.S.1,2
 - 
							Afiliações: 
							
- Novosibirsk State University
 - Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
 - Edição: Volume 50, Nº 9 (2024)
 - Páginas: 577-591
 - Seção: Articles
 - URL: https://kazanmedjournal.ru/0132-344X/article/view/667664
 - DOI: https://doi.org/10.31857/S0132344X24090058
 - EDN: https://elibrary.ru/LXMPNT
 - ID: 667664
 
Citar
Texto integral
Resumo
The reactions of cobalt(II) nitrate with 4,7-di(1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole (Tr2btd) and aromatic dicarboxylic acids (terephthalic (H2bdc), 2,6-naphthalenedicarboxylic (2,6-H2Ndc), and 2,5-furandicarboxylic (2,5-H2Fdc) acids) afford metal-organic frameworks [Co(Tr2btd)(bdc)]n (I) and {[Co2(Tr2btd)(Dmf)(2,6-Ndc)2]·Dmf}n (II) with the layered structures and chain metal-organic framework [Co(Tr2btd)2(H2O)(2,5-Fdc)]n (III). Compounds I and III are paramagnetic in a temperature range of 1.77–300 K without exchange interactions between the Co2+ cations, and compound II exhibits the antiferromagnetic interaction between the Co2+ cations in the binuclear building blocks with the exchange interaction constant J ≈ −100 K. Single crystals of the phase of compound IIIa with the identical composition but different structure are found when taking samples for X-ray diffraction (XRD) analysis. The molecular structures of metal-organic frameworks I, II, III, and IIIa are determined by XRD (CIF files CCDC nos. 2343141 (I), 2343297 (II), 2343296 (III), and 2343140 (IIIa)).
Palavras-chave
Texto integral
Sobre autores
D. Pavlov
Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: potapov@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
A. Lavrov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: potapov@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
D. Samsonenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: potapov@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Potapov
Novosibirsk State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: potapov@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
Bibliografia
- Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022, V. 63, P. 671. https://doi.org/10.1134/S0022476622050018
 - Dybtsev D.N., Bryliakov K.P. // Coord. Chem. Rev. 2021. V. 437. P. 213845.
 - You L.-X., Ren B.-Y., He Y.-K. et al. // J. Mol. Struct. 2024. V. 1304. P. 137687.
 - Zhou H.C.J., Kitagawa S. // Chem. Soc. Rev. 2014. V. 43. P. 5415.
 - Zhou W., Tang Y., Zhang X. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214949.
 - Efimova A.S., Alekseevskiy P.V., Timofeeva M.V. et al. // Small Methods. 2023. V. 7. P. 2300752.
 - Wang W., Chen D., Li F., Xiao X., Xu Q. // Chem. 2024. V. 10. P. 86.
 - Sun N., Yu H., Potapov A.S., Sun Y. // Comments Inorg. Chem. 2024. V. 44. P. 203.
 - Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. RCR5026. https://doi.org/10.1070/RCR5026
 - Yuvaraj A.R., Jayarama A., Sharma D. et al. // Int. J. Hydrogen Energy. 2024. V. 59. P. 1434.
 - Thorarinsdottir A.E., Harris T.D. // Chem. Rev. 2020. V. 120. P. 8716.
 - Shuku Y., Suizu R., Tsuchiizu M., Awaga K. // Chem. Commun. 2023. V. 59. P. 10105.
 - Demakov P.A., Kovalenko K.A., Lavrov A.N., Fedin V.P. // Inorganics. 2023. V. 11. P. 259.
 - Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. P. 1269.
 - Du M., Li C.-P., Liu C.-S., Fang S.-M. // Coord. Chem. Rev. 2013. V. 257. P. 1282.
 - Pramanik B., Sahoo R., Das M.C. // Coord. Chem. Rev. 2023. V. 493. P. 215301.
 - Pavlov D.I., Ryadun A.A., Potapov A.S. // Molecules. 2021. V. 26. P. 7392.
 - Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747.
 - Pavlov D.I., Yu X., Ryadun A.A., Fedin V.P., Potapov A.S. // Chemosensors. 2023. V. 11. P. 52.
 - Khisamov R.M., Konchenko S.N., Sukhikh T.S. // J. Struct. Chem. 2022. V. 63. P. 2113. https://doi.org/10.1134/S0022476622120228
 - Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 8162.
 - Khisamov R.M., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Inorganics. 2022. V. 10. P. 263.
 - Sukhikh T.S., Ogienko D.S., Bashirov D.A., Konchenko S.N. // Russ. Chem. Bull. 2019. V. 68. P. 651. https://doi.org/10.1007/s11172-019-2472-9
 - Katlenok E.A., Kuznetsov M.L., Semenov N.A. et al. // Inorg. Chem. Front. 2023. V. 10. P. 3065.
 - Radiush E.A., Wang H., Chulanova E.A. et al. // ChemPlusChem. 2023. V. 88. Art. e202300523.
 - Fedorov M.S., Filippov I.A., Giricheva N.I. et al. // J. Struct. Chem. 2022. V. 63, P. 1872. https://doi.org/10.1134/S0022476622110178
 - Chernick E.T., Abdollahi M.F., Tabasi Z.A. et al. // New J. Chem. 2022. V. 46. P. 572.
 - Yao S.L., Wu R.H., Wen P. et al. // J. Mol. Struct. 2024. V. 1297. 136925.
 - Cao X.Q., Wu W.P., Li Q. et al. // Dalton Trans. 2022. V. 52. P. 652.
 - Li L.-Q., Yao S.-L., Tian X.-M. et al. // CrystEngComm. 2021. V. 23. P. 2532.
 - Yao S.L., Xiong Y.C., Tian X.M. et al. // CrystEngComm. 2021. V. 23. P. 1898.
 - Jin J.K., Wu K., Liu X.Y. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21340.
 - Song C., Ling Y., Jin L. et al. // Dalton Trans. 2015. V. 45. P. 190.
 - Wu K., Liu X.-Y., Cheng P.-W. et al. // J. Am. Chem. Soc. 2023. V. 145. P. 18931.
 - Wu K., Jin J.K., Liu X.Y. et al. // J. Mater. Chem. C 2022. V. 10. P. 11967.
 - Sheldrick G.M. SADABS. Program for Empirical X-ray Absorption Correction. 2005.
 - Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
 - Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. P. 325.
 - Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
 - Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 133.
 - CrysAlisPro. Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET).
 - Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
 - Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
 - Healy C., Patil K.M., Wilson B.H. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213388.
 - Boča R. // Coord. Chem. Rev. 2004. V. 248. P. 757.
 - Yue Q., Gao E.-Q. // Coord. Chem. Rev. 2019. V. 382. P. 1.
 - Abasheeva K. D., Demakov P. A., Polyakova E. V. et al. // Nanomaterials. 2023. V. 13. P. 2773.
 
Arquivos suplementares
				
			
						
						
					
						
						
									











