Palladium Complexes of Pyrimidine-2-thiones: Synthesis, Structures, and Properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Complexes [PdL2Cl2] (I) and [PdL2Вr2] (II) (L is 5-acetyl-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyrimidine-2-thione) are synthesized and characterized by spectral methods (1Н, 13С NMR and IR spectroscopy). The crystal structure of complex I is determined (CIF file ССDС no. 2233053) in which the palladium atom is coordinated by two halide ions and two sulfur atoms of two ligands L in a distorted square planar geometry. The catalytic activity of the synthesized palladium(II) complexes in the model epoxidation of allyl alcohol is estimated in comparison with the catalytic activity of the corresponding palladium halides and titanium-containing zeolite TS-1.

全文:

受限制的访问

作者简介

A. Kuzovlev

Moscow State University; Tyumen State University

编辑信件的主要联系方式.
Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow; Tyumen

N. Gordeeva

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow

Zh. Pastukhova

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow

V. Chernyshev

Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow; Moscow

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow

S. Dunaev

Moscow State University

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow

L. Bruk

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
俄罗斯联邦, Moscow

参考

  1. Kokina T.E., Glinskaya L. A., Sheludyakova L. A. et al. // Polyhedron. 2019. V. 163. P. 121.
  2. Moro A.C., Mauro A. E., Netto A. V.G. et al. // Eur. J. Med. Chem. 2009. V. 44. № 11. P. 4611.
  3. Nadeem S., Bolte M., Ahmad S. et al. // Inorg. Chim. Acta. 2010. V. 363. № 13. P. 3261.
  4. Rohini G., Ramaiah K., Aneesrahman K. N. et al. // Appl. Organomet. Chem. 2018. V. 32. № 12. P. 4567.
  5. Da Silva D. L., Reis F. S., Muniz D. R. et al. // Bioorg. Med. Chem. 2012. V. 20. № 8. P. 2645.
  6. Sashidhara K.V., Avula S. R., Sharma K. et al. // Eur. J. Med. Chem. 2013. V. 60. P. 120.
  7. Kuzovlev A.S., Volkova D. A., Parfenova I. V. et al. // New J. Chem. 2020. V. 44. P. 7865.
  8. Kappe C.O. // Eur. J. Med. Chem. 2000. V. 35. P. 1043.
  9. Sati B. E., Sati H., Nargund L. V.G et al. // Orient. J. Chem. 2012. V. 28. № 2. P. 1055.
  10. Chikhale R., Thorat S., Pant A. et al. // Bioorg. Med. Chem. 2015. V. 23. № 20. P. 6689.
  11. Sawant R.L., Sarode V. I., Jadha G. D. et al. // Med. Chem. Res. 2011. V. 21. № 8. P. 1825.
  12. Kwon O.W., Moon E., Chari M. A. et al. // Bioorg. Med. Chem. Lett. 2012. V. 22. № 16. Р. 5199.
  13. Shkurko O.P., Tolstikova T. G., Sedova V. F. // Rus. Chem. Rev. 2016. V. 85. № 10. P. 1056.
  14. Lauro G., Strocchia M., Terracciano S. et al. // Eur. J. Med. Chem. 2014. V. 80. P. 407.
  15. Crespo A., El Maatougui A., Biagini P. et al. // ACS Med. Chem. Lett. 2013. V. 4. № 11. P. 1031.
  16. Cepeda V., Fuertes M., Castilla J. et al. // Anti-Cancer Agents Med. Chem. 2007. V. 7. № 1. P. 3.
  17. Alderden R.A., Hall M. D., Hambley T. W. // J. Chem. Ed. 2006. V. 83. № 5. P. 728.
  18. Kartalou, M. Essigmann, J.M. // Mut. Res. 2001. V. 478. № 1–2. Р. 23.
  19. De Moura T. R., Cavalcanti S. L., Sakamoto-Hojo E.T. et al. // Transition Met. Chem. 2017. V. 42. № 6. P. 565.
  20. Dorairaj D.P., Haribabu J., Hsu S. C.N. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 109018.
  21. Dorairaj D.P., Haribabu J., Chithravel V. et al. // Res. Chem. 2021. V. 3. P. 100157.
  22. Bharati P., Bharti A., Nath P. et al. // Inorg. Chim. Acta. 2016. V. 443. P. 160.
  23. Pearson R.G. // Phys. Inorg. Chem. 1963. V.85. № 22. P. 3533.
  24. Ruan J., Xiao J. // Acc. Chem. Res. 2011. V. 44. № 8. Р. 614.
  25. Sherwood J., Clark J. H., Fairlamb I. J.S. et al. // Green Chem. 2019. V. 21. P. 2164.
  26. Gadge S.T., Bhanage B. M. // RSC Adv. 2014. V. 4. P. 10367.
  27. Wang D., Weinstein A. B., White P. B. et al. // Chem. Rev. 2018. V. 118. № 5. P. 2636.
  28. Engle K.M., Yu J-Q. // J. Org. Chem. 2013. V. 78. P. 8927.
  29. Zhang L-M., Li H-Y., Li H-X. et al. // Inorg. Chem. 2017. V. 56. P. 11230.
  30. Jia W-G., Gao L-L, Wang Z-B. et al. // RSC Adv. 2017. V. 7. P. 42792.
  31. Chernyshev V.V. // Russ. Chem. Bull. Int. Ed. 2001. V. 50. P. 2273.
  32. Cerny R. // Crystals. 2017. V. 7. P. 142.
  33. Hughes C.E., Reddy G. N.M., Masiero S. et al. // Chem. Sci. 2017. V. 8. P. 3971.
  34. Pawley G.S. // J. Appl. Crystallogr. 1981. V. 14. P. 357.
  35. Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
  36. Zhukov S.G., Chernyshev V. V., Babaev E. V. et al. // Z. Kristallogr. 2001. V. 216. P. 5.
  37. Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
  38. Andreev S.V., Zverev S. A., Zamilatskov I. A. et al. // Acta Crystallorg. C. 2017. V. 73. P. 47.
  39. Erzina D.R., Zamilatskov I.A, Stanetskaya N. M. et al. // Eur. J. Org. Chem. 2019. P. 1508.
  40. Spek A.L. // Acta Crystallorg. D. 2009. V. 65. P. 148.
  41. Pastukhova Zh. Yu., Levitin V. V., Katsman E. A. et al. // Kinet. Catal. 2021. V. 62. № 5. P. 551.
  42. Groom C.R., Allen F. H. // Angew. Chem. 2014. V. 53. P. 662.
  43. Bordiga S., Bonina F., Damin A. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. № 35. P. 4854.
  44. Taramasso M., Perego G., Notari B. US Pat. № 4410501. 1983.
  45. Flaningen E.M., Bennett J. M., Grose R. W. et al. // Nature. 1978. V. 271. P. 512.
  46. Lane B.S., Burgess K. // Chem. Rev. 2003. V. 103. P. 2457.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (122KB)
3. Fig. 1. Molecular structure of complex I, showing the numbering of the non-hydrogen atoms and the atomic displacement spheres of 50% probability. The Pd(1) atom is at the centre of the inversion, the unnumbered atoms are linked to the numbered symmetry operations i - x, 1 - y, 2 - z.

下载 (454KB)
4. Fig. 2. Experimental diffractograms of II (curve 1) and I (curve 2).

下载 (116KB)
5. Scheme 2.

下载 (127KB)
6. Fig. 3. Kinetic curves of reagent consumption (AC - allyl alcohol, SP - hydrogen peroxide) and target product formation (GD - glycidol) during the epoxidation process using TS-1 as a catalyst.

下载 (121KB)

版权所有 © Российская академия наук, 2024