Synthesis of Reactive Pegylated Indocyanine Dyes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Synthesis was carried out with the selection of conditions for the isolation and purification of fluorescently labeled polyethylene glycol with a reactive carboxyl group for labeling biomolecules. Pegylated nucleotides, which are part of drugs, allow targeted delivery to the target organ, prolong the half-life, reduce immunogenicity and increase stability.

Sobre autores

V. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: kuzneimb@gmail.com
Moscow, Russia

G. Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

R. Miftahov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. Butvilovskaya

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. Grechishnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Stomahin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

O. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Рогfryeva N.N., Moustafine R.I., Khutoryanskiy V.V. // Polym. Sci. Ser. C. 2020. V. 62. P. 62–74. https://doi.org/10.1134/S1811238220010094
  2. Maier K.E., Rusconi C.P., Levy M. // Cell Chem. Biol. 2019. V. 26. P. 615–616. https://doi.org/10.1016/j.chembiol.2019.03.004
  3. Moreno A., Pitoo G.A., Ganson N.J., Layzer J.M., Hershfield M.S., Tarantal A.F., Sullenger B.A. // Cell Chem. Biol. 2019. V. 26. P. 634–644. https://doi.org/10.1016/j.chembiol.2019.02.009
  4. Zalipsky S. // Bioconjug. Chem. 1995. V. 6. P. 150–165. https://doi.org/10.1021/bc00034a003
  5. Veronese F.M., Caliceti P., Schiavon O. // J. Bioact. Comput. Polym. 1997. V. 12. P. 196–207. https://doi.org/10.1177/088391159701200302
  6. Geckli H., Xu F., Zhang X., Moon S., Demirci U. // Nanomedicine. 2010. V. 5. P. 469–484. https://doi.org/10.2217/nmm.10.21
  7. Thapaliya E.R., Usama S.M., Patel N.L., Feng Y., Kalen J.D., Croix B.S., Schuermann M.J. // Bioconjug. Chem. 2022. V. 33. P. 718–725. https://doi.org/10.1021/aos.bioconjchem.2c00015
  8. Zasedateleva O.A., Vasiliskov V.A., Surzhikov S.A., Kuznetsova V.E., Shershov V.E., Guestnov T.O., Sminov I.P., Yarasov R.A., Spitsyn M.A., Chudinov A.V. // Nucleic Acids Res. 2018. V. 46. P. e73. https://doi.org/10.1093/nar/gky251
  9. Shershov V.E., Lapa S.A., Levashova A.I., Shishkin I.Yu., Shlylev G.F., Shekalova E.Yu., Vasiliskov V.A., Zasedatelev A.S., Kuznetsova V.E., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 649–656. https://doi.org/10.1134/S1068162023050242
  10. Puchkov I.A., Bairamashvili D.I., Shvets V.I. // Fine Chem. Technol. 2014. V. 9. P. 3–31. https://doi.org/10.1134/S2410269414010063
  11. Roberts M.J., Bentley M.D., Harris J.M. // Adv. Drug Deliv. Rev. 2002. V. 54. P. 459–476. https://doi.org/10.1016/S0169-409X(02)00026-3
  12. Li J., Kao W.J. // Biomacromolecules. 2003. V. 4. P. 1055–1067. https://doi.org/10.1021/bm025727b
  13. Song F., Chen L., Lin R., Salter R. // J. Labelled Compd. Radiopharm. 2020. V. 63. P. 15–24. https://doi.org/10.1002/jlcr.3747

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025