Porphyrins as polyfunctional ligands for binding to DNA. Prospects for application

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study of the interaction of nucleic acids with ligands is relevant not only from a scientific point of view, but also has high potential practical significance. Complexes of nucleic acids with ligands affect the biochemical functions of the most important carrier of genetic information, which opens up opportunities for treating genetic diseases and controlling the aging of both cells and the organism as a whole. Among the huge variety of potential ligands, porphyrins and related compounds occupy a special place, due to their ability to generate reactive oxygen species under irradiation with light. The photocatalytic properties of porphyrins can be used in the creation of molecular tools for genetic engineering and the treatment of viral and bacterial infections at the genetic level. Modification of porphyrin compounds allows targeting of the ligand to a specific biological target. The review summarizes the literature data describing the processes of complexation of nucleic acids with aromatic ligands, mainly with porphyrins. The influence of the structure of macroheterocyclic compounds on the features of interaction with nucleic acids is analyzed. Promising directions for further research are outlined.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Lebedeva

Institute of Chemistry of Solutions named after G.A. Krestov, Russian Academy of Sciences

Email: yurina_elena77@mail.ru
Ресей, ul. Academicheskaya 1, Ivanovo, 153045

E. Yurina

Institute of Chemistry of Solutions named after G.A. Krestov, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: yurina_elena77@mail.ru
Ресей, ul. Academicheskaya 1, Ivanovo, 153045

Әдебиет тізімі

  1. Hannon M.J. // Chem. Soc. Rev. 2007. V. 36. P. 280–295. https://doi.org/10.1039/B606046N
  2. Lerman L.S. // J. Mol. Biol. 1961. V. 3. P. 18–30. https://doi.org/10.1016/S0022-2836(61)80004-1
  3. Olweny C.L.M., Toya T., Katongole-Mbidde E., Lwanga S.K., Owor R., Kyalwazi S., Vogel C.L. // Int. J. Cancer. 1974. V. 14. P. 649–656. https://doi.org/10.1002/ijc.2910140512
  4. Malogolowkin M., Cotton C.A., Green D.M., Breslow N.E., Perlman E., Miser J., Ritchey M.L., Thomas P.R.M., Grundy P.E., D’Angio G.J., Beckwith J.B., Shamberger R.C., Haase G.M., Donaldson M., Weetman R., Coppes M.J., Shearer P., Coccia P., Kletzel M., Macklis R., Tomlinson G., Huff V., Newbury R., Weeks D. // Pediatr. Blood Cancer. 2008. V. 50. P. 236–241. https://doi.org/10.1002/pbc.21267
  5. Giermasz A., Makowski M., Nowis D., Jalili A., Malgorzata M.A.J., Dabrowska A., Czajka A., Jakobisiak M., Golab J. // Oncol. Rep. 2002. V. 9. P. 199–203. https://doi.org/10.3892/or.9.1.199
  6. Brunnberg U., Mohr M., Noppeney R., Dürk H.A., Sauerland M.C., Müller-Tidow C., Krug U., Koschmieder S., Kessler T., Mesters R.M., Schulz C., Kosch M., Büchner T., Ehninger G., Dührsen U., Serve H., Berdel W.E. // Ann. Oncol. 2012. V. 23. P. 990–996. https://doi.org/10.1093/annonc/mdr346
  7. Kantarjian H.M., Talpaz M., Kontoyiannis D., Gutterman J., Keating M.J., Estey E.H., O’Brien S., Rios M.B., Beran M., Deisseroth A. // J. Clin. Oncol. 1992. V. 10. P. 398–405. https://doi.org/10.1200/JCO.1992.10.3.398
  8. Minuk L.A., Monkman K., Chin-Yee I.H., LazoLangner A., Bhagirath V., Chin-Yee B.H., Mangel J.E. // Leukemia & Lymphoma. 2012. V. 53. P. 57–63. https://doi.org/10.3109/10428194.2011.602771
  9. Martinez R., Chacon-Garcia L. // Curr. Med. Chem. 2005. V. 12. P. 127–151. https://doi.org/10.2174/0929867053363414
  10. Bhaduri S., Ranjan N., Arya D.P. // Beilstein J. Org. Chem. 2018. V. 14. P. 1051–1086. https://doi.org/10.3762/bjoc.14.93
  11. Mišković K., Bujak M., Baus Lončar M., GlavašObrovac L. // Arh. Hig. Rada Toksikol. 2013. V. 64. P. 593–601. https://doi.org/10.2478/10004-1254-64-2013-2371
  12. Mukherjee A., Sasikala W.D. // Adv. Protein Chem. Struct. Biol. 2013. V. 92. P. 1–62. https://doi.org/10.1016/B978-0-12-411636-8.00001-8
  13. Baruah H., Bierbach U. // Nucleic Acids Res. 2003. V. 31. P. 4138–4146. https://doi.org/10.1093/nar/gkg465
  14. Bazzicalupi C., Bencini A., Bianchi A., Biver T., Boggioni A., Bonacchi S., Danesi A., Giorgi C., Gratteri P., Ingraín A.M. // Chem. Eur. J. 2008. V. 14. P. 184–196. https://doi.org/10.1002/chem.200601855
  15. Berman H.M., Young P.R. // Ann. Rev. Biophys. Bioeng. 1981. V. 10. P. 87–114.
  16. Hu G.G., Shui X., Leng F., Priebe W., Chaires J.B., Williams L.D. // Biochemistry. 1997. V. 36. P. 5940– 5946. https://doi.org/10.1021/bi9705218
  17. Dickerson R.E., Drew H.R. // J. Mol. Biol. 1981. V. 149. P. 761–786. https://doi.org/10.1016/0022-2836(81)90357-0
  18. Pfoh R., Cuesta-Seijo J.A., Sheldrick G.M. // Acta Crystallog. Sect. F: Struct. Biol. Cryst. Commun. 2009. V. 65. P. 660–664. https://doi.org/10.1107/S1744309109019654
  19. Wang A.H.-J., Ughetto G., Quigley G.J., Hakoshima T., Van der Marel G.A., Van Boom J.H., Rich A. // Science. 1984. V. 225. P. 1115–1121. https://doi.org/10.1126/science.6474168
  20. Gao Q., Williams L.D., Egli M., Rabinovich D., Chen S.-L., Quigley G.J., Rich A. // Proc. Natl. Acad. Sci. 1991. V. 88. P. 2422–2426. https://doi.org/10.1073/pnas.88.6.2422
  21. Petersen M., Jacobsen J.P. // Bioconjug. Chem. 1998. V. 9. P. 331–340. https://doi.org/10.1021/bc970133i
  22. Günther K., Mertig M., Seidel R. // Nucleic Acids Res. 2010. V. 38. P. 6526–6532. https://doi.org/10.1093/nar/gkq434
  23. Lee S., Lee Y.-A., Lee H.M., Lee J.Y., Kim D.H., Kim S.K. // Biophys. J. 2002. V. 83. . 371–381. https://doi.org/10.1016/S0006-3495(02)75176-X
  24. Dixon I.M., Lopez F., Estève J.P., Tejera A.M., Blasco M.A., Pratviel G., Meunier B. // Chem. Bio. Chem. 2005. V. 6. P. 123–132. https://doi.org/10.1002/cbic.200400113
  25. Pasternack R.F., Garrity P., Ehrlich B., Davis C.B., Gibbs E.J., Orloff G., Giartosio A., Turano C. // Nucleic Acids Res. 1986. T. 14. C. 5919–5931. https://doi.org/10.1093/nar/14.14.5919
  26. Biver T. // Appl. Spectrosc. Rev. 2012. V. 47. P. 272–325. https://doi.org/10.1080/05704928.2011.641044
  27. Von Holde K.E., Johnson W.C., Pui S.H. // Principles of Physical Biochemistry, 2nd ed. Prentice Hall: Upper Saddle River, NJ, 2006.
  28. Kelly J.M., Murphy M.J., McConnell D.J., OhUigin C. // Nucleic Acids Res. 1985. V. 13. P. 167–184. https://doi.org/10.1093/nar/13.1.167
  29. Chirvony V.S., Galievsky V.A., Kruk N.N., Dzhagarov B.M., Turpin P.-Y. // J. Photochem. Photobiol. B Biol. 1997. V. 40. P. 154–162. https://doi.org/10.1016/S1011-1344(97)00043-2
  30. Shen Y., Myslinski P., Treszczanowicz T., Liu Y., Koningstein J. // J. Phys. Chem. C. 1992. V. 96. P. 7782– 7787.
  31. Keane P.M., Kelly J.M. // Coord. Chem. Rev. 2018. V. 364. P. 137–154. https://doi.org/10.1016/j.ccr.2018.02.018
  32. Chirvony V.S., Galievsky V.A., Terekhov S.N., Dzhagarov B.M., Ermolenkov V.V., Turpin P.Y. // Biospectroscopy. 1999. V. 5. P. 302–312. https://doi.org/10.1002/(SICI)1520-6343(1999)5: 5<302::AID-BSPY5>3.0.CO;2-N
  33. Bejune S.A., Shelton A.H., McMillin D.R. // Inorg. Chem. 2003. V. 42. P. 8465–8475. https://doi.org/10.1021/ic035092i
  34. Wall R.K., Shelton A.H., Bonaccorsi L.C., Bejune S.A., Dube D., McMillin D.R. // J. Am. Chem. Soc. 2001. V. 123. P. 11480–11481. https://doi.org/10.1021/ja010005b
  35. Collins D.M., Hoard J.L. // J. Am. Chem. Soc. 1970. V. 92. P. 3761–3771.
  36. Ghimire S., Fanwick P.E., McMillin D.R. // Inorg. Chem. 2014. V. 53. С. 11108–11118. https://doi.org/10.1021/ic501683t
  37. Mukundan N.E., Petho G., Dixon D.W., Kim M.S., Marzilli L.G. // Inorg. Chem. 1994. V. 33. P. 4676–4687.
  38. Aleeshah R., Samakoosh S.Z., Eslami A. // J. Iran. Chem. Soc. 2019. V. 16. P. 1327–1343. https://doi.org/10.1007/s13738-019-01609-2
  39. Gray T.A., Marzilli L.G., Yue K.T. // J. Inorg. Biochem. 1991. V. 41. P. 205–219. https://doi.org/10.1016/0162-0134(91)80013-8
  40. Pasternack R.F., Gibbs E.J., Villafranca J.J. // Biochemistry. 1983. V. 22. P. 5409–5417.
  41. Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A. // Dyes and Pigments. 2023. V. 220. P. 111723. https://doi.org/10.1016/j.dyepig.2023.111723
  42. Mathew D., Sujatha S. // J. Inorg. Biochem. 2021. V. 219. P. 111434. https://doi.org/10.1016/j.jinorgbio.2021.111434
  43. Hamilton L.D., Barclay R.K., Wilkins M.H.F., Brown G.L., Wilson H.R., Marvin D.A., EphrussiTaylor H., Simmons N.S. // J. Cell Biol. 1959. V. 5. P. 397–404. https://doi.org/10.1083/jcb.5.3.397
  44. Lebedeva N.S., Yurina E., Lebedev M., Kiselev A., Syrbu S., Gubareva Y.A. // Macroheterocycles. 2021. V. 14. P. 342–347. https://doi.org/10.6060/mhc214031g
  45. Cenklová V. // J. Photochem. Photobiol. B Biol. 2017. V. 173. P. 522–537. https://doi.org/10.1016/j.jphotobiol.2017.06.029
  46. Wang L.-L., Wang H.-H., Wang H., Liu H.-Y. // J. Phys. Chem. B. 2021. V. 125. P. 5683–5693. https://doi.org/10.1021/acs.jpcb.0c09335
  47. Tjahjono D. H., Akutsu T., Yoshioka N., Inoue H. // Biochim. Biophys. Acta Gen. Subj. 1999. V. 1472. P. 333–343. https://doi.org/10.1016/S0304-4165(99)00139-7
  48. Yamamoto T., Tjahjono D.H., Yoshioka N., Inoue H. // Bull. Chem. Soc. Jpn. 2003. V. 76. P. 1947– 1955. https://doi.org/10.1246/bcsj.76.1947
  49. Tjahjono D.H., Mima S., Akutsu T., Yoshioka N., Inoue H. // J. Inorg. Biochem. 2001. V. 85. P. 219–228. https://doi.org/10.1016/S0162-0134(01)00186-6
  50. Wang P., Ren L., He H., Liang F., Zhou X., Tan Z. // ChemBioChem. 2006. V. 7. P. 1155–1159. https://doi.org/10.1002/cbic.200600036
  51. Hirakawa K., Harada M., Okazaki S., Nosaka Y. // ChemComm. 2012. V. 48. P. 4770–4772. https://doi.org/10.1039/C2CC30880K
  52. Caminos D.A., Durantini E.N. // J. Porphyr. Phthalocyan. 2005. V. 9. P. 334–342. https://doi.org/10.1142/S1088424605000423
  53. Reddi E., Ceccon M., Valduga G., Jori G., Bommer J. C., Elisei F., Latterini L., Mazzucato U. // Photochem. Photobiol. 2002. V. 75. P. 462–470. https://doi.org/10.1562/0031-8655(2002)0750462PPA AAO2.0.CO2
  54. Cárdenas-Jirón G.I., Cortez L. // J. Mol. Model. 2013. V. 19. P. 2913–2924. https://doi.org/10.1007/s00894-013-1822-z
  55. Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A., Syrbu S.A. // Dyes and Pigments. 2019. V. 162. P. 266–271. https://doi.org/10.1016/j.dyepig.2018.10.034
  56. Oliveira V.A., Terenzi H., Menezes L.B., Chaves O.A., Iglesias B.A. // J. Photochem. Photobiol. B Biol. 2020. V. 211. P. 111991. https://doi.org/10.1016/j.jphotobiol.2020.111991
  57. Vizzotto B.S., Dias R.S., Iglesias B.A., Krause L.F., Viana A.R., Schuch A.P. // J. Photochem. Photobiol. B Biol. 2020. V. 209. P. 111922. https://doi.org/10.1016/j.jphotobiol.2020.111922
  58. Lipscomb L.A., Zhou F.X., Presnell S.R., Woo R.J., Peek M.E., Plaskon R.R., Williams L.D. // Biochemistry. 1996. V. 35. P. 2818–2823. https://doi.org/10.1021/bi952443z
  59. Komor A.C., Barton J.K. // ChemComm. 2013. V. 49. P. 3617–3630. https://doi.org/10.1039/C3CC00177F
  60. Galindo-Murillo R., Cheatham T.E. // Nucleic Acids Res. 2021. V. 49. P. 3735–3747. https://doi.org/10.1093/nar/gkab143
  61. García-Ramos J.C., Galindo-Murillo R., CortésGuzmán F., Ruiz-Azuara L. // J. Mex. Chem. Soc. 2013. V. 57. P. 245–259.
  62. Song H., Kaiser J.T., Barton J.K. // Nat. Chem. 2012. V. 4. P. 615–620. https://doi.org/10.1038/nchem.1375
  63. Lebedeva N.Sh., Yurina E.S., Guseinov S.S., Koifman O.I. // Macroheterocycles. 2023. V. 16. P. 211–217. https://doi.org/10.6060/mhc235287l
  64. Lebedeva N.S., Yurina E.S., Guseinov S.S., Syrbu S.A. // J. Incl. Phenom. Macrocycl. Chem. 2023. V. 103. P. 429–440. https://doi.org/10.1007/s10847-023-01207-z
  65. Das A., Mohammed T.P., Kumar R., Bhunia S., Sankaralingam M. // Dalton Trans. 2022. V. 51. P. 12453–12466. https://doi.org/10.1039/D2DT00555G
  66. Cheng F., Wang H.-H., Kandhadi J., Zhao F., Zhang L., Ali A., Wang H., Liu H.-Y. // J. Phys. Chem. B. 2018. V. 122. P. 7797–7810. https://doi.org/10.1021/acs.jpcb.8b02292
  67. Li H., Fedorova O.S., Grachev A.N., Trumble W.R., Bohach G.A., Czuchajowski L. // Biochim. Biophys. Acta Gen. Struc. Express. 1997. V. 1354. P. 252–260. https://doi.org/10.1016/S0167-4781(97)00118-8
  68. Syrbu S.A., Kiselev A.N., Lebedev M.A. Yurina E.S., Lebedeva N.Sh. // Russ. J. Gen. Chem. 2023. V. 93. P. S562–S571. https://doi.org/10.1134/S1070363223150197
  69. Lebedeva N.Sh., Yurina E.S., Kiselev A.N., Lebedev M.A., Syrbu S.A. // Mendeleev Commun. 2024. V. 34. P. 525–527. https://doi.org/10.1016/j.mencom.2024.06.018

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Visualization of parallel (a) or perpendicular (b) intercalation with respect to DNA base pairs (blue) [12].

Жүктеу (169KB)
3. Fig. 2. Modification of proflavine to increase the affinity and selectivity of DNA binding [14].

Жүктеу (81KB)
4. Fig. 3. 3D image of DNA intercalation complexes with bisintercalates: bisdaunomycin and TOTO [12].

Жүктеу (115KB)
5. Fig. 4. 3D image of intercalation complexes of DNA with nogalamycin. Additional binding of peripheral substituents to fragments of the minor and major grooves is realized [12].

Жүктеу (53KB)
6. Fig. 5. Structural formulas of tetra- and dicationic porphyrins/metalloporphyrins.

Жүктеу (161KB)
7. Fig. 6. (a) – Image of a continuous helix observed in the crystal of d(CGATCG) CuTMPyP4; (b) – total electron density of the d(CGATCG)–CuTMPyP4 complex; (c) – model of the d(CGATCG) CuTMPyP4 complex [58].

Жүктеу (223KB)
8. Fig. 7. Unsymmetrical cationic porphyrins containing residues of heteroaromatic molecules.

Жүктеу (91KB)

© Russian Academy of Sciences, 2024