Spatial masking of the delayed sound motion: EEG and behavioral measures
- Authors: Shestopalova L.B.1, Petropavlovskaia E.A.1, Salikova D.A.1
-
Affiliations:
- Pavlov Institute of Physiology, RAS
- Issue: Vol 51, No 3 (2025)
- Pages: 14-27
- Section: Articles
- URL: https://kazanmedjournal.ru/0131-1646/article/view/684021
- DOI: https://doi.org/10.31857/S0131164625030025
- EDN: https://elibrary.ru/TSBATO
- ID: 684021
Cite item
Abstract
This study investigated the effect of simultaneous masking at different angular distances between stationary maskers and signals with delayed motion onset on the perceived location of signal trajectory endpoints and the strength of the global field power (GFP) in evoked responses in the electroencephalogram. Stimulus positions were manipulated through interaural intensity differences. Evoked responses to the signal's onset and offset were maximally suppressed when the masker position matched the signal’s starting and ending points, respectively. As the distance increased, the responses partially recovered, indicating a spatial release from masking. The maximum suppression of the motion onset response occurred when the lateral or central masker was located at the end of the movement trajectory. Despite complete or partial suppression of the GFP, the listeners were able to localize the test signals under masking conditions. However, the perceived signal trajectories shortened, and their perceived positions shifted away from the masker. The GFPs were more susceptible to energetic masking, while behavioral responses were more robust in recognizing motion, as they relied on the activity of broad neural networks involved in the integration of sensory information over a longer time period.
Full Text

About the authors
L. B. Shestopalova
Pavlov Institute of Physiology, RAS
Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, St. Petersburg
E. A. Petropavlovskaia
Pavlov Institute of Physiology, RAS
Email: shestolido@mail.ru
Russian Federation, St. Petersburg
D. A. Salikova
Pavlov Institute of Physiology, RAS
Email: shestopalovalb@infran.ru
Russian Federation, St. Petersburg
References
- Litovsky R.Y. Spatial release from masking // Acoust. Today. 2012. V. 8. P. 18.
- Yonovitz A., Thompson C.L., Lozar J. Masking level differences: Auditory evoked responses with homophasic and antiphasic signal and noise // J. Speech Hear. Res. 1979. V. 22. № 2. P. 403.
- Vaitulevich S.F., Maltseva N.V. Reflection of binaural release from masking in long-latency auditory evoked potentials in humans // Fiziologiya Cheloveka. 1987. V. 13. № 2. P. 186.
- Lewald J., Getzmann S. Electrophysiological correlates of cocktail-party listening // Behav. Brain Res. 2015. V. 292. P. 157.
- Szalárdy O., Tóth B., Farkas D. et al. Neuronal correlates of informational and energetic masking in the human brain in a multi-talker situation // Front. Psychol. 2019. V. 10. P. 786.
- Altman Ya.A., Vaitulevich S.F. [Auditory evoked potentials in humans and sound source localization]. SPb.: Nauka, 1992. 136 p.
- Varfolomeev A.L., Starostina L.V. [Auditory event-related potentials to the apparent auditory image motion] // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2006. V. 92. № 9. P. 1046.
- Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. № 2. P. 1649.
- Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. № 12. P. 2625.
- Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion // Brain Res. 2021. V. 1752. P. 147232.
- Semenova V.V., Shestopalova L.B., Petropavlovskaya E.A. et al. Latency of motion onset response as an integrative measure of processing sound movement // Human Physiology. 2022. V. 48. № 4. P. 401.
- Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hear. Res. 2010. V. 259. № 1–2. P. 44.
- Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception // Hear. Res. 2024. V. 441. P. 108922.
- Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A. et al. Event-related potentials in conditions of auditory spatial masking in humans // Human Physiology. 2022. V. 48. № 6. P. 633.
- Petropavlovskaia E.A., Shestopalova L.B., Salikova D.A., Semenova V.V. [Offset responses in conditions of auditory spatial masking in humans] // Zh. Vyssh. Nervn. Deyat. Im. I.P. Pavlova 2023. V. 73. № 6. P. 735.
- Petropavlovskaia E.A., Shestopalova L.B., Salikova D.A. Localization of moving sound stimuli under conditions of spatial masking // Human Physiology. 2024. V. 50. № 2. P. 116.
- Altman Ya.A. [Spatial hearing]. SPb.: Institut fiziologii im. I.P. Pavlova RAN, 2011. 311 p.
- Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis // Neuroimage. 2007. V. 34. № 4. P. 1443.
- Skrandies W. Data reduction of multichannel fields: Global field power and principal component analysis // Brain Topogr. 1989. V. 2. № 1–2. P. 73.
- Somervail R., Zhang F., Novembre G. et al. Waves of change: Brain sensitivity to differential, not absolute, stimulus intensity is conserved across humans and rats // Cereb. Cortex. 2021. V. 31. № 2. P. 949.
- Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex // Neuroscientist. 2012. V. 18. № 6. P. 602.
- Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997.
- Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83.
- Altmann C.F., Ueda R., Bucher B. et. al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography // NeuroImage. 2017. V. 159. P. 185.
- Papesh M.A., Folmer R.L., Gallun F.J. Cortical measures of binaural processing predict spatial release from masking performance // Front. Hum. Neurosci. 2017. V. 11. P. 124.
- Karanasiou I.S., Papageorgiou C., Kyprianou M. et al. Effect of frequency deviance direction on performance and mismatch negativity // J. Integr. Neurosci. 2011. V. 10. № 4. P. 525.
- Peter V., McArthur G., Thompson W.F. Effect of deviance direction and calculation method on duration and frequency mismatch negativity (MMN) // Neurosci. Lett. 2010. V. 482. № 1. P. 71.
- Shestopalova L.B., Petropavlovskaia E.A., Semeno-va V.V., Nikitin N.I. Mismatch negativity and psychophysical detection of rising and falling intensity sounds // Biol. Psychol. 2018. V. 133. P. 99.
- Yost W.A. The cocktail party effect: 40 years later / Localization and Spatial Hearing in Real and Virtual Environments // Eds. Gilkey R., Anderson T. Erlbaum Press, Mahwah, NJ, 1997. P. 329.
- Yost W.A., Brown C.A. Localizing the sources of two independent noises: Role of time varying amplitude differences // J. Acoust. Soc. Am. 2013. V. 133. № 4. P. 2301.
- Zhong X., Yost W.A. How many images are in an auditory scene? // J. Acoust. Soc. Am. 2017. V. 141. № 4. P. 2882.
- Arbogast T.L., Mason C.R., Kidd G. Jr. The effect of spatial separation on informational and energetic masking of speech // J. Acoust. Soc. Am. 2002. V. 112. № 5. Pt. 1. P. 2086.
- Kidd G. Jr., Mason C.R., Swaminathan J. et al. Determining the energetic and informational components of speech-on-speech masking // J. Acoust. Soc. Am. 2016. V. 140. № 1. P. 132.
Supplementary files
