Analysis of the Requirements for Metrological Support of Methods and Means of Ultrasound Control
- Authors: Shikhov A.I.1, Gogolinsky K.V.2, Zubarev A.S.3, Smorodinsky Y.G.4, Kopytina D.V.1, Vinogradova A.А.1
-
Affiliations:
- Empress Catherine II Saint Petersburg Mining University
- Konstantinov Petersburg Nuclear Physics Institute
- A3 Engineering
- Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Issue: No 3 (2025)
- Pages: 29-46
- Section: Acoustic methods
- URL: https://kazanmedjournal.ru/0130-3082/article/view/682819
- DOI: https://doi.org/10.31857/S0130308225030039
- ID: 682819
Cite item
Abstract
Establishing requirements for acoustic measurements and standard samples and monitoring their implementation during production and certification is an important task. In this paper, the parameters affecting the propagation velocity of elastic waves in steel are considered, and their contribution to the total uncertainty of measuring the propagation velocity of a longitudinal wave is determined. Based on the data obtained, an analysis of the standards devoted to ultrasonic testing methods was carried out in terms of the requirements for standard samples. The conducted research allowed us to establish that the requirements imposed by the current standards do not sufficiently take into account a number of factors that may affect the characteristics of ultrasound measures and reference samples. Standard samples made without taking these factors into account are unlikely to adequately assess the metrological characteristics of ultrasound equipment.
Full Text

About the authors
Alexander I. Shikhov
Empress Catherine II Saint Petersburg Mining University
Author for correspondence.
Email: shihov-gol@mail.ru
Russian Federation, 2, Line 21, Vasilyevsky Island, Saint Petersburg, 199106
Kirill V. Gogolinsky
Konstantinov Petersburg Nuclear Physics Institute
Email: nanoscan@yandex.ru
Russian Federation, 1, Orlov Grove, Gatchina, Leningrad Region, 188300
Alexey S. Zubarev
A3 Engineering
Email: info@a3-eng.com
Russian Federation, Bldg. 1, 7, Nagorny Drive, Moscow, 117105
Yakov G. Smorodinsky
Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: jack.sm@mail.ru
Russian Federation, 18, S. Kovalevskaya St., Yekaterinburg, 620108
Daria V. Kopytina
Empress Catherine II Saint Petersburg Mining University
Email: daryakopytina2000@yandex.ru
Russian Federation, 2, Line 21, Vasilyevsky Island, Saint Petersburg, 199106
Anna А. Vinogradova
Empress Catherine II Saint Petersburg Mining University
Email: Vinogradova_AA@pers.spmi.ru
Russian Federation, 2, Line 21, Vasilyevsky Island, Saint Petersburg, 199106
References
- Grigorev E., Nosov V. Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow // Applied Sciences. 2022. V. 12 (9). doi: 10.3390/app12094549
- Fedorov V.V. On the metrological status of samples for ultrasonic non-destructive testing // Non-destructive testing and diagnostics. 2011. No. 3.
- Gogolinsky K. V., Syasko V. A. The current state and problems of legislative regulation, metrological support and standardization in the field of non-destructive testing // Legislative and applied metrology. 2019. No. 4. P. 15—21. REDN: PEACE be with you.
- RMG 29-2013. The state system of ensuring the uniformity of measurements. Metrology. Basic terms and definitions: date of introduction 2015-01-01. Moscow: Standartinform, 2014. 60 p.
- GOST R ISO 33—2019 “REGULATORY DOCUMENTS”. Good practice in using standard samples: date of introduction 08/01/2020. Ural Scientific Research Institute of Metrology (FSUE UNIIM).
- Gonchar A., Solovyov A., Klyushnikov V. Ultrasound examination of longitudinal critically refracted and volumetric waves of the thermal impact zone of a welded joint made of low carbon steel under fatigue conditions // Vestn. Acoustics 2024. No. 6. P. 593—609. doi: 10.3390/acoustics 6030032
- Mogilner L.Yu., Syasko V.A., Shikhov A.I. Modeling of defects in ultrasonic non-destructive testing: current state and prospects // Russ J. Non-destructive Testing. 2024. V. 60. P. 481—500. doi: 10.1134/S1061830924700657
- Chassignol B., Gerdjuma El R., Ploa M.-A., Fouquet T. Ultrasonic and structural characteristics of welds made of anisotropic austenitic stainless steel: towards improving the reliability of ultrasonic non-destructive testing, flaw detection and International standards. 2010. V. 43. P. 273. doi: 10.1016/j.ndteint.2009.12.005
- Noritaka Yu., Mohammadjawad F., Ryuji S., Takashi F., Masayuki T. High-frequency ultrasonic inspection of the connecting surface between the divertor monoblock and the cooling pipe // Thermonuclear Engineering and Design. 2023. P. 187. doi: 10.1016/j.fusengdes.2022.113367
- Popov G., Bolobov V., Zhuikov I., Zlotin V. Development of the Kinetic Equation of the Groove Corrosion Process for Predicting the Residual Life of Oil-Field Pipelines // Energies. 2023. V. 16. P. 7067. doi: 10.3390/en16207067
- Romanko A.A. Ultrasonic non-destructive testing measures: regulation of technical requirements // Measuring technology. 2023. No. 3. P. 55. doi: 10.32446/0368-1025it.2023-3-55-60
- Federal Information Fund for Ensuring the Uniformity of Measurements : website. URL: https://fgis.gost.ru/fundmetrology/registry/4/items/1382458 (date of request: 07/05/2023).
- RD-50-407-83 Methodological guidelines. The main parameters of tilt transducers for ultrasonic inspection of welded joints at a frequency of 1.25–5 MHz with prism angles of 30—55 °. Measurement procedure : date of introduction 1984-07-01. Moscow: Publishing House of Standards, 1983. 20 p.
- GOST 26266—90 Non-destructive testing. Ultrasonic transducers. General technical requirements: date of introduction 1991-01-01. Moscow: Standartinform, 2010. 18 p.
- GOST 18576—96 Non-destructive testing. Railway rails. Ultrasound methods : date of introduction 2002-01-01. Minsk: Publishing House of Standards, 2001. 31 p.
- GOST R 55724—2013 Non-destructive testing. The joints are welded. Ultrasound methods: date of introduction 2015-07-01. Moscow: Standartinform, 2014. 27 p.
- L. U., Lian J. The influence of microstructures on the optical production automation system // Procedia Manufacturing. 2020. V. 47. P. 1552. doi: 10.1016/j.promfg.2020.04.349
- Bolobov V.I., Ilnur U.L., Zhukov V.S., Popov G.G. Using the magnetic anisotropy method to determine hydrogenated sections of a steel pipeline // Energia. V. 16. P. 5585—5585. doi: 10.3390/en16155585
- Konchus D.A., Pryashin E.I., Sivenkov A.V. Structural changes in the market metallurgy as a result of laser marking // CIS iron and steel review. 2021. P. 96—101. doi: 10.17580/cisisr.2021.02.18
- Alekseev V.I., Barakhtin B.K., Zhukov A.S. Chemical heterogeneity as a factor in increasing the strength of steels manufactured using selective laser melting technology // Bulletin of the Mining Institute. Business Activity Index: 10.31897/PMI.2020.2.191
- Volokitina I., Fedyuk R., Sizyakova E.V., Kolesnikov A. Development of a regime for thermomechanical processing of stainless steel rings // Materials. V. 15. P. 4930—4930. doi: 10.3390/ma15144930
- Gromyka D.S., Gogolinsky K.V. Introduction of a methodology for assessing the condition of excavator bucket teeth during maintenance and repair: An overview. MIAB. Mountain inf. Anal sex. Bull. 2023. No. 8. P. 94—111. [In Russian]. doi: 10.25018/0236_1493_2023_8_0_94
- Kok Yu., Tan H.P., Wang P., Nai M.L.S., Lo N.H., Liu E., Tor S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in additive manufacturing of metals: a critical review // Materials and Design. 2018. V. 139. P. 565. doi: 10.1016/j.matdes.2017.11.021
- Pryakhin E.I., Sharapova D.M. Understanding the structure and properties of the thermal influence zone in welds and model samples made of high-strength low-alloy steels after modeling heat treatment cycles // Review of Metrology of the CIS countries. V. 19. P. 60—65. doi: 10.17580/cisisr.2020.01.12
- Vera L., Hugo V.C., Edgard M.S., Silva A.A., Manuel R.S. Tavares Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements // Materials Science and Engineering: A. 2010. V. 527. P. 16. doi: 10.1016/j.msea.2010.03.090
- Mishakin V.V., Gonchar A.V., Kurashkin K.V., Klyushnikov V.A., Kachanov M. On low-cycle fatigue of austenitic steel. Part I: Changes of Poisson’s ratio and elastic anisotropy // International Journal of Engineering Science. 2021. V. 168. P. 103567. doi: 10.1016/j.ijengsci.2021.103567
- Klyushnikov V.A. Influence of plastic deformation temperature on ultrasonic and electromagnetic properties of austenitic steel // Materials Today: Proceedings. 2019. V. 19. P. 2320. doi: 10.1016/j.matpr.2019.07.679
- Luo Z., Jin S, Zou L., Zhu X., Lin Li. Gain-scale ultrasonic properties measurement of cast austenitic stainless steel // Measurement. 2020. V. 151. doi: 10.1016/j.measurement.2019.107231
- Chen Y., Luo Z., Zhou Q., Zou L., Lin L. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic Stainless steel based on EBSD analysis // Ultrasonics. 2015. V. 59. P. 31. doi: 10.1016/j.ultras.2015.01.009
- Takahashi S., Motegi R. Measurement of third-order elastic constants and applications to loaded structural materials // SpringerPlus. 2015. V. 4. No. 25. doi: 10.1186/s40064-015-1019-2
- Li Z., He J., Teng J., Wang Y. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method // Materials. 2016. V. 9. No. 223. doi: 10.3390/ma9040223
- Acevedo R., Sedlak P., Kolman R., Fredel M. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review // Journal of Materials Research and Technology. 2020. V. 9. No. 4. P. 9457. doi: 10.1016/j.jmrt.2020.05.092
- Bazargan M., Almqvist B.S.G., Motra H.B., Broumand P., Schmiedel T., Hieronymus C.F. Elastic Wave Propagation in a Stainless-Steel Standard and Verification of a COMSOL Multiphysics Numerical Elastic Wave Toolbox // Resources. 2022. No. 11. P. 49. doi: 10.3390/resources11050049
- Salmi A., Eleonora A. Residual stress analysis of thin AlSi10Mg parts produced by Laser Powder Bed Fusion // Virtual and Physical Prototyping. 2020. V. 15 (1). P. 49—61. doi: 10.1080/17452759.2019.1650237
- GOST R ISO 7963—20 “Non-destructive testing. Ultrasonic control. Technical specifications for reference sample No. 2”.
- Mutua J., Nakata Sh., Onda T., Chen Zhong-Chun. Optimization of selective laser melting Polyanskiy V.A., parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel // Materials & Design. 2018. V. 139. P. 486. doi: 10.1016/j.matdes.2017.11.042
- Mooney B., Kourousis Kyriakos I., Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments // Additive Manufacturing. 2019. V. 25. P. 19. doi: 10.1016/j.addma.2018.10.032
- Tretyakov D., Belyaev A., Shaposhnikov N. Acoustic anisotropy and localization of plastic deformation in aluminum alloys // Materials Today: Proceedings. 2020. V. 30. P. 413. doi: 10.1016/j.matpr.2019.12.387
- Alekseeva Е.L., Belyaev A.K., Grishchenko A.I., Mansyrev D.E., Polyanskiy V.A., Tretyakov D.A., Shvetsov O.V. The Initiation Mechanism of Plastic Strain Localization Bands and Acoustic Anisotropy // Procedia Structural Integrity. 2017. No. 6. P. 128. doi: 10.1016/j.prostr.2017.11.020
- Belyaev A.K., Polyanskiy V.A., Semenov A.S., Tretyakov D.A., Yakovlev Y.A. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state // Procedia Structural Integrity. 2017. No. 6. P. 201. doi: 10.1016/j.prostr.2017.11.031
- Malmström M., Jansson A., Hutchinson B. Application of Laser-Ultrasonics for Evaluating Textures and Anisotropy // Appl. Sci. 2022. No. 12. P. 10547. doi: 10.3390/app122010547
- Lhémery A., Calmon P., Chatillon S., Gengembre N. Modeling of ultrasonic fields radiated by contact transducer in a component of irregular surface // Ultrasonics. 2002. V. 40. P. 231. doi: 10.1016/S0041-624X(02)00143-9
- Chiang E.H., Adler R.S., Meyer C.R., Rubin J.M., Dedrick D.K., Laing T.J. Quantitative assessment of surface roughness using backscattered ultrasound: The effects of finite surface curvature // Ultrasound in Medicine & Biology. 1994. V. 20. P. 123. doi: 10.1016/0301-5629(94)90077-9
- Alanisamy R.P., Pyun D.-K., Findikoglu A.T. Accurate Ultrasonic Thickness Measurement for Arbitrary Time-Variant Thermal Profile // Sensors. 2024. V. 24. P. 5304. doi: 10.3390/s24165304
- Kowalczyk J., Jósko M., Wieczorek D., Sędłak K., Nowak M. The Influence of the Hardness of the Tested Material and the Surface Preparation Method on the Results of Ultrasonic Testing // Appl. Sci. 2023. V. 13. P. 9904. doi: 10.3390/app13179904
- Lukomski T., Stepinski T. Steel hardness evaluation based on ultrasound velocity measurements // Insight Non-Destr. Test. Cond. Monit. 2010. V. 52. P. 592—596. doi: 10.1784/insi.2010.52.11.592
- Duijster A., Volker A., Van den Berg F., Celada-Casero C. Estimation of Grain Size and Composition in Steel Using Laser UltraSonics Simulations at Different Temperatures // Appl. Sci. 2023. V. 13. P. 1121. doi: 10.3390/app13021121
- GOST R 8.637—2007 GSI. Standard samples for metrological support of non-destructive testing of pipelines. General requirements: date of introduction 2008-10-01. Moscow: Standartinform, 2008. 5 p.
- GOST R 50.05.02—2018 Conformity assessment system in the field of atomic energy use. Conformity assessment in the form of control. Unified methods. Ultrasonic inspection of welded joints and deposited coatings: date of introduction 2018-03-01. Moscow: Standartinform, 2018. 90 p.
- GOST 28831—90 Thick-sheet metal rental. Ultrasonic testing methods: date of introduction 1992-01-07. Moscow: Publishing House of Standards, 1992. 7 p.
- GOST 21120—75 Bars and blanks of round and rectangular cross-section. Methods of ultrasonic flaw detection: date of introduction 1977-01-01. Moscow: Publishing House of Standards, 1989. 7 p.
- GOST 24507—80 Non-destructive testing. Forgings from ferrous and non-ferrous metals. Methods of ultrasonic flaw detection: date of introduction 1982-01-01. Moscow: Standartinform, 2010. 10 p.
- GOST R 50.05.13—2019 Assessment system in the field of atomic energy use. Ultrasonic inspection of welded joints using phased array technology: date of introduction 2019-08-01. Moscow: Standartinform, 2019. 24 p.
- GOST R 50.05.18—2019 Assessment system in the field of atomic energy use. Joints of welded parts made of steels of various structural classes for equipment and pipelines of nuclear power plants. Ultrasound control procedure: date of introduction 2019-08-01. Moscow: Standartinform, 2019. 15 p.
- GOST R 50.05.05—2018 Assessment system in the field of atomic energy use. Conformity assessment in the form of control. Unified methods. Ultrasonic inspection of basic materials (semi–finished products): date of introduction 2018-03-01. Moscow: Standartinform, 2018. 32 p.
- GOST R ISO 16831—2016 Non-destructive testing. Ultrasonic control. Characterization and verification of ultrasonic equipment for thickness measurements: date of introduction 2016-11-01. Moscow: Standartinform, 2016. 20 p.
- GOST 21397—81 Non-destructive testing. A set of standard samples for ultrasonic inspection of semi-finished products and products made of aluminum alloys. Technical specifications: date of introduction 1983-01-01. Moscow: Publishing House of Standards, 1981. 10 p.
- GOST 22727—88 Rolled sheet. Methods of ultrasound control: date of introduction 1989-01-07. Moscow: Publishing House of Standards, 1988. 15 p.
- GOST 31244—2004 Non-destructive testing. Evaluation of the physico-mechanical characteristics of the elements of technical systems by the acoustic method. General requirements: date of introduction 2010-04-01. Moscow: Standartinform, 2010. 11 p.
- GOST 26126—84 Non-destructive testing. The joints are soldered. Ultrasonic quality control methods: date of introduction 1985-01-07. Moscow: Publishing House of Standards, 1984. 9 p.
- GOST 14782—86 Non-destructive testing. Welded joints. Ultrasound methods: date of introduction 1988-01-01. Moscow: Publishing House of Standards, 1986.
- GOST R 50.05.03—2022 Conformity assessment system in the field of atomic energy use. Conformity assessment in the form of control. Unified methods. Ultrasonic inspection and thickness measurement of monometals, bimetals and anti-corrosion coatings: date of introduction 2023-03-01. Moscow: Institute of Standardization, 2022. 46 p.
- GOST R 50.05.04—2018 Conformity assessment system in the field of atomic energy use. Conformity assessment in the form of control. Unified methods. Ultrasonic inspection of welded joints made of austenitic steel: date of introduction 2018-03-03. Moscow: Standartinform, 2018. 28 p.
- GOST R 57932—2017 Polymer composites. Acoustic and ultrasonic inspection of pressure vessels manufactured by winding: date of introduction 2018-06-06. Moscow: Standartinform, 2017. 14 p.
- GOST R ISO 16809—2015 Non-destructive testing. Ultrasonic control. Thickness measurement: date of introduction 2016-03-01. Moscow: Standartinform, 2015. 36 p.
- GOST 22727—88 Rolled sheet. Methods of ultrasound control: date of introduction 1989-01-07. Moscow: Publishing House of Standards, 1988. 15 p.
- GOST R 56814—2015 Polymer composites. Ultrasonic inspection of the material of the outer layers and the material of the inner layer of “sandwich” structures: date of introduction 2017-01-01. Moscow: Standartinform, 2016. 15 p.
- GOST 14637—89 Rolled thick-sheet carbon steel of ordinary quality. Technical specifications: date of introduction 1991-01-01. Moscow: Standartinform, 2008. 11 p.
- GOST 1050—2013 Metal products made of non-alloy structural high-quality and special steels. General technical conditions: date of introduction 2015-01-01. Moscow: Standartinform, 2014. 36 p.
- Kadisa R.L., Nezhikhovsky G.R., Simina V.B. EVRAHIM / SITAK Manual Quantitative description of uncertainty in analytical measurements Quantifying Uncertainty in Analytical Measurement / under the general editorship of L.A. Konopelko. 2nd edition translated from English. St. Petersburg: Mendeleev VNIIM, 2002. 149 p.
- Vintage of steels and alloys. 2nd ed., supplement. and ispr. / A.S. Zubchenko, M.M. Koloskov, Yu. V. Kashirsky. Under the general editorship of A.S. Zubchenko, Moscow: Mashinostroenie, 2003. 784 p.
- Zhdaneev O.V., Zaitsev A.V., Lobankov V.M. Metrological support of equipment for geophysical research // Notes of the Mining Institute. 2020. V. 246. P. 667—677. doi: 10.31897/PMI.2020.6.9
Supplementary files
