Brain mechanisms of jazz improvisation
- Authors: Skryabin V.Y.1
-
Affiliations:
- Russian Medical Academy of Continuous Professional Education
- Issue: Vol 75, No 1 (2025)
- Pages: 15-23
- Section: ОБЗОРЫ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://kazanmedjournal.ru/0044-4677/article/view/682785
- DOI: https://doi.org/10.31857/S0044467725010025
- ID: 682785
Cite item
Abstract
Musical improvisation, especially in jazz, is a unique form of creative process that requires active interaction between different brain networks. Unlike the performance of pre-learned musical parts, improvisation is characterized by the reduced functional connectivity between the central executive network (ECN) and the default mode network (DMN), allowing bottom-up processes to guide creative behavior. This phenomenon, known as hypofrontality, contributes to reduced cognitive control and facilitates spontaneous idea generation. The aim of this review is to investigate the neural mechanisms underlying musical improvisation. Findings have shown that cognitive control is reduced during improvisation, allowing musicians to generate new musical ideas with minimal interference from executive functions. At the same time, performing pre-learned music requires higher levels of cognitive appraisal and control, which is associated with higher functional connectivity of the ECN and DMN. Of particular interest was the finding that the same neural networks are activated during imaginative improvisation as during real performance, which emphasizes the importance of self-referential processes in creativity. The findings support the hypothesis that improvisation activates unique neural mechanisms that facilitate spontaneous creativity and the free flow of ideas.
Full Text

About the authors
V. Yu. Skryabin
Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: sardonios@yandex.ru
Russian Federation, Moscow
References
- Beaty R.E. The neuroscience of musical improvisation. Neurosci Biobehav Rev. 2015. 51: 108–17. doi: 10.1016/j.neubiorev.2015.01.004.
- Vergara V.M., Norgaard M., Miller R., Beaty R.E., Dhakal K., Dhamala M., Calhoun V.D. Functional network connectivity during Jazz improvisation. Sci Rep. 2021. 11 (1): 19036. doi: 10.1038/s41598-021-98332-x.
- Pressing J. Improvisation: methods and models. In: Sloboda J.A. (Ed.). Generative Processes in Music: The Psychology of Performance, Improvisation, and Composition. Oxford: Oxford University Press, 1988. 320 pp. ISBN978–0198521549.
- Ericsson K.A., Krampe R.T., Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychological Review. 1993. 100(3): 363–406. doi: 10.1037/0033-295X.100.3.363.
- Simon H.A., Chase W.G. Skill in chess. Am. Sci. 1973. 61: 394–403.
- Norgaard M. How jazz musicians improvise: The central role of auditory and motor patterns. Music Percept. 2021. 31: 271–287. https://doi.org/10.1525/mp.2014.31.3.271.
- Meinz E.J., Hambrick D.Z. Deliberate practice is necessary but not sufficient to explain individual differences in piano sight-reading skill: the role of working memory capacity. Psychol Sci. 2010. 21(7): 914–9. doi: 10.1177/0956797610373933.
- Ericsson K.A. Training history, deliberate practice and elite sports performance: an analysis in response to Tucker and Collins review – what makes champions? Br. J. Sports Med. 2013. 47(9): 533–5. doi: 10.1136/bjsports-2012-091767.
- Tucker R., Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012. 46(8): 555–61. doi: 10.1136/bjsports-2011-090548.
- Hambrick D.Z., Oswald F.L., Altmann E.M., Meinz E.J., Gobet F., Campitelli G. Deliberate practice: is that all it takes to become an expert? Intelligence. 2014. 45: 34–45.
- Hambrick D.Z., Meinz E.J. Limits on the predictive power of domain-specific experience and knowledge in skilled performance. Curr. Direct. Psychol. Sci. 2011. 20: 275–279.
- Beaty R.E., Benedek M., Silvia P.J., Schacter D.L. Creative Cognition and Brain Network Dynamics. Trends Cogn. Sci. 2016. 20(2): 87–95. doi: 10.1016/j.tics.2015.10.004.
- Andrews-Hanna J. R., Smallwood J., Spreng R.N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 2014. 1316(1): 29–52. doi: 10.1111/nyas.12360.
- Raichle M.E. The brain’s default mode network. Ann. Rev. Neurosci. 2015. 8: 38: 433–47. doi: 10.1146/annurev-neuro-071013-014030.
- Bowman C.R., Zeithamova D. Abstract Memory Representations in the Ventromedial Prefrontal Cortex and Hippocampus Support Concept Generalization. J. Neurosci. 2018. 38(10): 2605–2614. doi: 10.1523/JNEUROSCI.2811-17.2018.
- Spalding K.N., Schlichting M.L., Zeithamova D., Preston A.R., Tranel D., Duff M.C., Warren D.E. Ventromedial Prefrontal Cortex Is Necessary for Normal Associative Inference and Memory Integration. J. Neurosci. 2018. 38(15): 3767–3775. doi: 10.1523/JNEUROSCI.2501-17.2018.
- Leech R., Sharp D.J. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014. 137(Pt 1): 12–32. doi: 10.1093/brain/awt162.
- Bird C.M., Keidel J.L., Ing L.P., Horner A.J., Burgess N. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex. J. Neurosci. 2015. 35(43): 14426–34. doi: 10.1523/JNEUROSCI.1774-15.2015.
- Dietrich A., Haider H. A Neurocognitive Framework for Human Creative Thought. Front. Psychol. 2017. 7: 2078. doi: 10.3389/fpsyg.2016.02078.
- Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007. 27(9): 2349–56. doi: 10.1523/JNEUROSCI.5587-06.2007.
- Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002. 3(3): 201–15. doi: 10.1038/nrn755.
- Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 2001. 24: 167–202. doi: 10.1146/annurev.neuro.24.1.167.
- Pinho A.L., de Manzano O., Fransson P., Eriksson H., Ullen F. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci. 2014. 34(18): 6156–63. doi: 10.1523/JNEUROSCI.4769-13.2014.
- Limb C.J., Braun A.R. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One. 2008. 3(2): e1679. doi: 10.1371/journal.pone.0001679.
- Berkowitz A.L. The Improvising Mind: Cognition and Creativity in the Musical Moment. Oxford: Oxford University Press, 2010. 205 pp. ISBN978-0-19-959095-7.
- Dietrich A. The cognitive neuroscience of creativity. Psychon Bull Rev. 2004. 11(6): 1011–26. doi: 10.3758/bf03196731.
- Harris D.J., Vine S.J., Wilson M.R. Is flow really effortless? The complex role of effortful attention. Sport Exerc. Perform. Psychol. 2017. 6: 103–114. https://doi.org/10.1037/spy0000083.
- Liu S., Chow H.M., Xu Y., Erkkinen M.G., Swett K.E., Eagle M.W., Rizik-Baer D.A., Braun A.R. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci Rep. 2012. 2: 834. doi: 10.1038/srep00834.
- Donnay G.F., Rankin S.K., Lopez-Gonzalez M., Jiradejvong P., Limb C.J. Neural Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in Jazz. PLoS ONE. 2014. 9(2): e88665. doi: 10.1371/journal.pone.0088665
- Berkowitz A.L., Ansari D. Generation of novel motor sequences: the neural correlates of musical improvisation. Neuroimage. 2008. 41(2): 535–43. doi: 10.1016/j.neuroimage.2008.02.028.4.
- Hirshorn E.A., Thompson-Schill S. L. Role of the let inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006. 44(12): 2547–57. doi: 10.1016/j.neuropsychologia.2006.03.035.
- Forstmann B.U., Brass M., Koch O., von Cramon D.Y. Voluntary selection of task sets revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 2006. 18(3): 388–98. doi: 10.1162/089892906775990589.
- Walton M.E., Devlin J.T., Rushworth M.F. Interactions between decision making and performance monitoring within prefrontal cortex. Nat. Neurosci. 2004. 7(11): 1259–65. doi: 10.1038/nn1339.
- Sutherland M.T., McHugh M. J., Pariyadath V., Stein E.A. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage. 2012. 62(4): 2281–95. doi: 10.1016/j.neuroimage.2012.01.117.
- Sonuga-Barke E. J., Castellanos F.X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 2007. 31(7): 977–86. doi: 10.1016/j.neubiorev.2007.02.005.
- Loui P. Rapid and flexible creativity in musical improvisation: review and a model. Ann. NY Acad. Sci. 2018. Mar. 25. doi: 10.1111/nyas.13628.
- Halwani G.F., Loui P., Ruber T., Schlaug G. Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol. 2011. 2: 156. doi: 10.3389/fpsyg.2011.00156.
- Arkin C., Przysinda E., Pfeifer C.W., Zeng T., Loui P. Gray Matter Correlates of Creativity in Musical Improvisation. Front Hum Neurosci. 2019. 13:169. doi: 10.3389/fnhum.2019.00169.
- Belden A., Zeng T., Przysinda E., Anteraper S.A., Whitfield-Gabrieli S., Loui P. Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. Neuroimage. 2020. 207: 116384. doi: 10.1016/j.neuroimage.2019.116384.
- Dhakal K., Norgaard M., Adhikari B.M., Yun K.S., Dhamala M. Higher Node Activity with Less Functional Connectivity During Musical Improvisation. Brain Connect. 2019. 9(3): 296–309. doi: 10.1089/brain.2017.0566.
- Adhikari B.M., Norgaard M., Quinn K.M., Ampudia J., Squirek J., Dhamala M. The Brain Network Underpinning Novel Melody Creation. Brain Connect. 2016. 6(10): 772–785. doi: 10.1089/brain.2016.0453.
- Beaty R.E., Seli P., Schacter D.L. Network Neuroscience of Creative Cognition: Mapping Cognitive Mechanisms and Individual Differences in the Creative Brain. Curr Opin Behav Sci. 2019. 27: 22–30. doi: 10.1016/j.cobeha.2018.08.013.
- Gerlach K.D., Spreng R.N., Madore K.P., Schacter D.L. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Soc. Cogn. Affect. Neurosci. 2014. 9(12): 1942–51. doi: 10.1093/scan/nsu001.
- Kim K., Johnson M.K. Extended self: spontaneous activation of medial prefrontal cortex by objects that are ‘mine’. Soc. Cogn. Affect. Neurosci. 2014. 9(7): 1006–12. doi: 10.1093/scan/nst082.
- Князев Г.Г., Савостьянов А.Н., Рудыч П.Д., Бочаров А.В. Использование методов машинного обучения для анализа паттернов активности мозга в процессе оценки себя и других людей. Журнал высшей нервной деятельности им. И.П. Павлова. 2023. Т. 73. № 2. С. 242–255.
- Ruiz M.H., Jabusch H.C., Altenmuller E. Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists. Cereb Cortex. 2009. 19(11): 2625–39. doi: 10.1093/cercor/bhp021.
- Pinho A.L., Ullen F., Castelo-Branco M., Fransson P., de Manzano O. Addressing a Paradox: Dual Strategies for Creative Performance in Introspective and Extrospective Networks. Cereb Cortex. 2016. 26(7): 3052–63. doi: 10.1093/cercor/bhv130.
- De Manzano O., Theorell T., Harmat L., Ullen F. The psychophysiology of flow during piano playing. Emotion. 2010. 10(3): 301–11. doi: 10.1037/a0018432.
Supplementary files
