TESTING OF QUADRATURE FORMULAS FOR THE DIRECT VALUE OF THE NORMAL DERIVATIVE OF A SINGLE-LAYER POTENTIAL AT THE BOUNDARY OF A THIN BODY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using test examples constructed on the basis of an explicit solution of the jump problem, a comparison of quadrature formulas for the direct value of the normal derivative of the harmonic single-layer potential on the boundary of a thin body is carried out. It is established that the error of calculations using the quadrature formula based on numerical integration is several times greater than the error of calculations using the improved quadrature formula based on the analytical calculation of integrals. As numerical tests have shown, the improved quadrature formula provides acceptable calculation accuracy even when the thickness of the body is significantly smaller than the integration step, which makes it possible to achieve the required calculation accuracy at a lower cost. The obtained results can be used for numerical solution of boundary value problems in thin bodies and in layered media by the potential method.

Sobre autores

P. Krutitskii

M.V. Keldysh IAM, RAS

Email: biem@mail.ru
Moscow

I. Reznichenko

M.V. Keldysh IAM, RAS

Email: io.reznichenko@physics.msu.ru
Moscow

Bibliografia

  1. Крутицкий П.А. Смешанная задача для уpавнения Лапласа в тpехмеpной многосвязной области // Дифференц. ур-ния. 1999. Т. 35. № 9. С. 1179–1186.
  2. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987.
  3. Крутицкий П.А., Резниченко И.О., Колыбасова В.В. Квадратурная формула для прямого значения нормальной производной потенциала простого слоя // Дифференц. ур-ния. 2020. Т. 56. № 9. С. 1270–1288.
  4. Krutitskii P.A., Reznichenko I.O. Improved Quadrature Formulas for the Direct Value of the Normal Derivative of a Single-Layer Potential // Comput. Math. and Math. Phys. 2024. Vol. 64. № 2. P. 188–205.
  5. Medkova D., Krutitskii P.A. The harmonic Dirichlet problem for a cracked domain with jump conditions on cracks // Applicable Analysis. 2004. V. 83. № 7. P. 661–671.
  6. Medkova D., Krutitskii P.A. Neumann and Robin problems in a cracked domain with jump conditions on cracks // J. Math. Anal. Appl. 2005. V. 301. P. 99–114.
  7. Krutitskii P.A. The jump problem for the Laplace equation // Appl. Math. Letters. 2001. V. 14. № 3. P. 353–358.
  8. Krutitskii P.A. Explicit solution of the jump problem for the Laplace equation and singularities at the edges // Math. Problems in Engng. 2001. V. 7. № 1. P. 1–13.
  9. Владимиров В.С. Уравнения математической физики. М.: Физматлит, 1981.
  10. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. М.: Физматлит, 2000.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024