Interaction of Boundary Singular Points in an Elliptic Boundary Value Problem
- Autores: Bogovskii A.M.1
 - 
							Afiliações: 
							
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
 
 - Edição: Volume 63, Nº 9 (2023)
 - Páginas: 1524-1530
 - Seção: Partial Differential Equations
 - URL: https://kazanmedjournal.ru/0044-4669/article/view/664989
 - DOI: https://doi.org/10.31857/S0044466923090041
 - EDN: https://elibrary.ru/RJMDHQ
 - ID: 664989
 
Citar
Texto integral
Resumo
The paper continues the construction of the Lp-theory of elliptic Dirichlet and Neumann boundary value problems with discontinuous piecewise constant coefficients in divergent form for an unbounded domain  R2 with a piecewise 
 smooth noncompact Lipschitz boundary and C1 smooth discontinuity lines of the coefficients. An earlier constructed Lp-theory is generalized to the case of different smallest eigenvalues corresponding to a finite and an infinite singular point, and the effect of their interaction is further studied in the class of functions with first derivatives from Lp( ) in the entire range of the exponent p (1, ).
.
Palavras-chave
Sobre autores
A. Bogovskii
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: abogovski@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Денисов В.Н., Боговский А.М. О взаимодействии граничных особых точек в задаче Дирихле для эллиптического уравнения с кусочно-постоянными коэффициентами в плоской области // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 12. С. 2155–2174.
 - Денисов В.Н., Боговский А.М. О взаимосвязи слабых решений эллиптических краевых задач Дирихле и Неймана для плоской односвязной области // Матем. заметки. 2020. Т. 107. № 1. С. 32–48.
 - Brezis H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. New York: Springer, 2011.
 
				
			
						
						
					
						
						
									



