Квантово-химическое изучение катализа в реакции N,О-диметилкарбамата с метиламином
- Авторы: Самуилов А.Я.1, Кожанова Е.П.1, Самуилов Я.Д.1
-
Учреждения:
- Казанский национальный исследовательский технологический университет
- Выпуск: Том 95, № 1-2 (2025)
- Страницы: 17-26
- Раздел: Статьи
- URL: https://kazanmedjournal.ru/0044-460X/article/view/679800
- DOI: https://doi.org/10.31857/S0044460X25010036
- EDN: https://elibrary.ru/AHPUPQ
- ID: 679800
Цитировать
Аннотация
Квантово-химическими гибридными методами функционала плотности М06 и B3LYP изучены некаталитическая и катализируемые ацетатом цинка и метилатом натрия реакции N,O-диметикарбамата с метиламином. Все взаимодействия протекают через согласованные циклические переходные состояния. Некаталитическая и катализируемая ацетатом цинка реакции характеризуются большим барьером свободной энергии активации. Катализируемое метилатом натрия превращение характеризуется отрицательной энтальпией активации и малой величиной свободной энергии активации.
Ключевые слова
Полный текст

Об авторах
Александр Яковлевич Самуилов
Казанский национальный исследовательский технологический университет
Email: ysamuilov@yandex.ru
ORCID iD: 0000-0001-7763-8326
Россия, Казань, 420015
Екатерина Павловна Кожанова
Казанский национальный исследовательский технологический университет
Email: ysamuilov@yandex.ru
ORCID iD: 0009-0004-6676-9629
Россия, Казань, 420015
Яков Дмитриевич Самуилов
Казанский национальный исследовательский технологический университет
Автор, ответственный за переписку.
Email: ysamuilov@yandex.ru
ORCID iD: 0000-0002-5943-7448
Россия, Казань, 420015
Список литературы
- Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy, Sh. Ambarine, B. Auckloo. Amsterdam: Elsevier, 2023. 430 p.
- Toader G., Rusen E., Teodorescu M., Diacon A., Stanescu P.O., Rotariu T., Rotariu A. // J. Appl. Polym. Sci. 2016. Vol. 133. N 38. P. 43967. doi: 10.1002/app.43967
- Zhang R., Huang W., Lyu P., Yan S., Wang X., Ju J. // Polymers. 2022. Vol. 14. N 13. P. 2670. doi: 10.3390/polym14132670
- Wu G., Wang X., Wang Y., Ji C., Zhao C. // Mater. Des. 2022. Vol. 224. P. 111371. doi 10.1016/ j.matdes.2022.111371
- Luo Y., Pu K., Gao J., Zhou Y., Wan J., Bai X. // J. Appl. Polym. Sci. 2024. Vol. 141. N 18. P. e55304. doi: 10.1002/app.55304
- Lai W., Qin B., Xu J.F., Zhang X. // J. Polym. Sci. 2024. Vol. 62. N 5. P. 900. doi: 10.1002/pol.20230455
- Luo J., Wang T., Sim C., Li Y. // Polymers. 2022. Vol. 14. N 14. P. 2808. doi: 10.3390/polym14142808
- Toader G., Diacon A., Axinte S.M., Mocanu A., Rusen E. // Polymers. 2024. Vol. 16. N 4. P. 454. doi: 10.3390/polym16040454
- Iqbal N., Kumar D., Roy P.K. // J. Appl. Polym. Sci. 2018. Vol. 135. N 40. P. 46730. doi: 10.1002/app.46730
- Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM International, 2001. 133 p.
- Shi R., Jiang S., Cheng H., Wu P., Zhang C., Arai M., Zhao F. // ACS Sust. Chem. Eng. 2020. Vol. 8. N 50. P. 18626. doi: 10.1021/acssuschemeng.0c06911
- Lin C., Xie K., Tang D. // J. Appl. Polym. Sci. 2022. Vol. 139. N 28. P. e52513. doi: 10.1002/app.52513
- Zheng L., Xi Q., Hu G., Wang B., Song D., Zhang Y., Liu Y. // Polymers. 2024. Vol. 16. N 7. P. 993. doi: 10.3390/polym16070993
- Tundo P., Arico F. // ChemSusChem. 2023. Vol. 16. N 23. P. e202300748. doi: 10.1002/cssc.202300748
- Verma K., Sharma A., Singh J., Badru R. // Sustain. Chem. Pharm. 2023. Vol. 33. P. 101117. doi 10.1016/ j.scp.2023.101117
- Самуилов А.Я., Алекбавев Д.Р., Самуилов Я.Д. // ЖOpХ. 2018. Т. 54. № 10. С. 1441; Samuilov A.Y., Alekbaev D.R., Samuilov Y.D. // Russ. J. Org. Chem. 2018. Vol. 54. N 10. P. 1453. doi: 10.1134/S1070428018100032
- Самуилов А.Я., Самуилов Я.Д. // ЖФХ. 2022. Т. 96. № 2. С. 205; Samuilov A.Y., Samuilov Y.D. // Russ. J. Phys. Chem. (A). 2022. Vol. 96. N 2. P. 293. doi: 10.1134/S0036024422020248
- Ma S., Liu C., Sablong R.J., Noordover B.A., Hensen E.J., van Benthem R.A., Koning C.E. // ACS Catal. 2016. Vol. 6. N 10. P. 6883. doi: 10.1021/acscatal.6b01673
- Ban J.L., Li S.Q., Yi C.F., Zhao J.B., Zhang Z.Y., Zhang J.Y. // Chin. Polym. Sci. 2019. Vol. 37. P. 43. doi: 10.1007/s10118-018-2165-0
- Rhoné B., Semetey V. // Synlett. 2017. Vol. 28. N 15. P. 2004. doi: 10.1055/s-0036-1588866
- Zhao L., Semetey V. // ACS Omega. 2021. Vol. 6. N 6. P. 4175. doi: 10.1021/acsomega.0c04855
- Bakkali-Hassani C., Berne D., Ladmiral V., Caillol S. // Macromolecules. 2022. Vol. 55. N 18. P. 7974. doi: 10.1021/acs.macromol.2c01184
- Alam M.M., Varala R., Seema V. // Mini-Rev. Org. Chem. 2024. Vol. 21. N 5. P. 555. doi: 10.2174/1570193X20666230507213511
- Kožený V., Mindl J., Štěrba V. // Chem. Pap. 1997. Vol. 51. N 1. P. 29.
- Prachi R., Tanwar D.K., Gill M.S. // SynOpen. 2023. Vol. 7. N 4. P. 555. doi: 10.1055/a-2157-5925
- Ohshima T., Hayashi Y., Agura K., Fujii Y., Yoshiyama A., Mashima K. // Chem. Commun. 2012. Vol. 48. N 44. P. 5434. doi: 10.1039/c2cc32153j
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Revision A.1. Gaussian Inc, Wallingford, 2009.
- Sholl D.S., Steckel J.A. Density Functional Theory: A Practical Introduction. Hoboken: John Wiley & Sons, 2023. 224 p.
- Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications / Eds. E. Cancès, G. Friesecke. Cham: Springer, 2023. 580 p.
- Wynne‐Jones W.F.K., Eyring H. // J. Chem. Phys. 1935. Vol. 3. N 8. P. 492. doi: 10.1063/1.1749713
Дополнительные файлы
