Localization of formation reactions of protective heteropolynuclear complexes in the depth of oxide-hydroxide passivating films on the surface of mild steel

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The laws of the formation of passivating films on the surface of mild steel in a borate buffer environment (pH = 7.4) containing additives of corrosion inhibitors nitrilotris(methylenephosphonato)zinc tridecahydrate Na4[Zn{N(CH2PO3)]·13H2O and nitrilotris(methylenephosphonatoaqua)cadmium heptahydrate Na4[Cd(H2O){N(CH2(PO3)3}]·7H2O have been investigated by X-ray photoelectron spectroscopy with layer-by-layer etching with Ar+ ions. The composition and structure of films, localization features of the processes of interaction of inhibitor ions with iron ions, related processes and products of these interactions in the depth of the films were established. The protective properties of passivating films and the anticorrosive properties of inhibitors have been studied using a potentiodynamic method.

Texto integral

Acesso é fechado

Sobre autores

I. Kazantseva

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
ORCID ID: 0000-0003-4556-3854
Rússia, 426067, Izhevsk

F. Chausov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: chaus@udman.ru
ORCID ID: 0000-0003-4950-2370
Rússia, 426067, Izhevsk

N. Lomova

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
ORCID ID: 0000-0002-6568-4736
Rússia, 426067, Izhevsk

V. Vorob’yov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
ORCID ID: 0000-0002-9401-0802
Rússia, 426067, Izhevsk

N. Isupov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
ORCID ID: 0000-0002-2515-8117
Rússia, 426067, Izhevsk

Bibliografia

  1. Кузнецов Ю.И. // Усп. хим. 2004. Т. 73. С. 79; Kuznetsov Yu.I. // Russ. Chem. Rev. 2004. Vol. 73. N 1. doi: 10.1070/RC2004v073n01ABEH000864
  2. Жук Н.П. Курс теории коррозии и защиты металлов. М.: Металлургия, 1976. 472 с.
  3. Князева Л.Г. Автореф. дис. … докт. хим. наук. Тамбов, 2012. 49 с.
  4. Vigdorovitch V.I., Tsygankova L.E., Vigdorowitsch M., Shel N.V., Knyazeva L.G. // Port. Electrochim. Acta. 2021. Vol. 39. P. 335. doi: 10.4152/pea.2021390503
  5. Зарапина И.В., Осетров А.Ю., Жиркова Ю.В. // Успехи в химии и химической технологии. 2023. Т. 37. № 2. С. 47.
  6. Кузнецов Ю.И., Раскольников А.Ф. // Защита металлов. 1992. Т. 28. № 2. С. 249.
  7. Shaban A., Kalman E., Biczо I. // Corros. Sci. 1993. Vol. 35. N 5–8. P. 1463. doi: 10.1016/0010-938X(93)90372-N
  8. Gonzalez Y., Lafont M.C., Pebere N., Moran F.A. // J. Appl. Electrochem. 1996. Vol. 26. P. 1259. doi: 10.1007/BF00249928
  9. Felhosi I., Keresztes Zs., Kármán F.H., Mohai M., Bertóti I., Kálmánz E. // J. Electroch. Soc. 1999. Vol. 146. N 3. P. 961. doi: 10.1149/1.1391706
  10. Rajendran S., Appa Rao B.V., Palaniswamy N. // Anti-Corros. Methods Mater. 2000. Vol. 47. N 2. P. 83. doi: 10.1108/00035590010316430
  11. Demadis K.D., Katarachia S.D., Koutmos M. // Inorg. Chem. Commun. 2005. N 8. P. 254. doi 10.1016/ j.inoche.2004.12.019
  12. Demadis K.D., Manzaridis C., Raptis R.G., Mezei G. // Inorg. Chem. Commun. 2005. N 44. P. 4469. doi: 10.1021/ic050572q
  13. Muthumani N., Rajendran S., Pandiarajan M., Lydia Christy J., Nagalakshm R. // Port. Electrochim. Acta. 2012. Vol. 30. P. 307. doi: 10.4152/pea.201205307
  14. Prabakaran M., Vadivu K., Ramesh S., Periasamy V. // Egypt. J. Petrol. 2014. V.23. P. 367. doi 10.1016/ j.ejpe.2014.09.004.
  15. Кузнецов Ю.И. // Защита металлов. 2002. Т. 38. № 2. С. 122; Kuznetsov Yu.I. // Protect. Metals. Vol. 38. N 2. P. 103. doi: 10.1023/A:1014904830050.
  16. Кузнецов Ю.И., Андреев Н.Н., Маршаков А.И. // ЖФХ. 2020. T. 94. № 3. С. 381; Kuznetsov Y.I., Andreev N.N., Marshakov A.I. // Russ. J. Phys. Chem. (A). 2020. Vol. 94. N 3. P. 505. doi: 10.31857/S0044453720030152
  17. Telegdi J., Shaglouf M.M., Shaban A., Kármán F.H., Betróti I., Mohai M., Kálmán E. // Electrochim. Acta. 2001. Vol. 46. P. 3791. doi: 10.1016/S0013-4686(01)00666-1
  18. Chausov F.F., Kazantseva I.S., Reshetnikov S.M., Lomova N.V., Maratkanova A.N., Somov N.V. // ChemistrySelect. 2020. Vol. 5. P. 13711. doi: 10.1002/slct.202003255
  19. Somov N., Chausov F. CCDC 919565: Experimental Crystal Structure Determination, 2014. doi: 10.5517/cczvwd2
  20. Chausov F.F., Kazantseva I.S., Reshetnikov S.M., Lomova N.V., Maratkanova A.N., Somov N.V. CCDC 2036586: Experimental Crystal Structure Determination, 2020. doi: 10.5517/ccdc.csd.cc26c7b5
  21. Сомов Н.В., Чаусов Ф.Ф. // Кристаллография. 2014. Т. 59. № 1. С. 71. doi: 10.7868/S0023476113050123; Somov N.V., Chausov F.F. // Crystallogr. Rep. 2014. Vol. 59. N 1. P. 66. doi: 10.1134/S1063774513050118
  22. Чаусов Ф.Ф., Сомов Н.В., Закирова Р.М., Алалыкин А.А., Решетников С.М., Петров В.Г., Александров В.А., Шумилова М.А. // Изв. АН. Серия физ. 2017. Т 81. № 3. С. 394. doi: 10.7868/S0367676517030085; Chausov F.F., Somov N.V., Zakirova R.M., Alalykin A.A., Reshetnikov S.M, Petrov V.G., AleksandrovV.A., Shumilova M.A. // Bull. Russ. Acad. Sci. Physics. 2017. Vol. 81. N 3. P. 365. doi: 10.3103/S106287381703008X
  23. Chausov F.F., Somov N.V., Zakirova R.M., Alalykin A.A., Кeshetnikov S.M., Petrov V.G., Aleksandrov V.A., Shumilova M.A. CCDC 1849911: Experimental Crystal Structure Determination, 2018. doi: 10.5517/ccdc.csd.cc202zkn
  24. Chausov F.F., Somov N.V., Zakirova R.M., Alalykin A.A., Кeshetnikov S.M., Petrov V.G., Aleksandrov V.A., Shumilova M.A. CCDC 1850041: Experimental Crystal Structure Determination, 2018. doi: 10.5517/ccdc.csd.cc2033r0
  25. Chausov F.F., Lomova N.V., Dobysheva L.V., Somov N.V., Ul’yanov A.L., Maratkanova A.N., Kholzakov A.V., Kazantseva I.S. // J. Solid State Chem. 2020. Vol. 286. Article no. 121324. doi: 10.1016/j.jssc.2020.121324
  26. Чаусов Ф.Ф., Ульянов А.Л., Казанцева И.С., Добышева Л.В. // Физика металлов и металловедение. 2023. Т. 124. № 1. С. 36. doi: 10.31857/S0015323022601416
  27. Dobysheva L.V., Chausov F.F., Lomova N.V. // Mater. Today Commun. 2021. Vol. 29. P. 102892. doi 10.1016/ j.mtcomm.2021.102892
  28. Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverria J., Cremades E., Barragan F., Alvarez S. // Dalton Trans. 2008. Vol. 21. P. 2832. doi: 10.1039/b801115j.
  29. Kazantseva I.S., Chausov F.F., Lomova N.V., Vorob’yov V.L., Maratkanova A.N. // Mater. Today Commun. 2022. Vol. 32. Article no. 104022. doi 10.1016/ j.mtcomm.2022.104022.
  30. Kuznetsov Yu.I., Redkina G.V. // Coatings. 2022. Vol. 12. N 2. Article no. 149. doi: 10.3390/coatings12020149.
  31. Чаусов Ф.Ф., Ломова Н.В., Сомов Н.В., Решетников С.М., Воробьев В.Л., Казанцева И.С. // Изв. АН. Cер. физ. 2020. Т. 84. № 9. С. 1313. doi: 10.31857/S0367676520090112; Chausov F.F., Lomova N.V., Somov N.V., Reshetnikov S.M., Vorob’yov V.L., Kazantseva I.S. // Bull. Russ. Acad. Sci. Physics. 2020. Vol. 84. N 9. P. 1119. doi: 10.3103/S1062873820090117
  32. Жилин И.А., Чаусов Ф.Ф., Ломова Н.В., Казанцева И.С., Исупов Н.Ю., Аверкиев И.К. // ЖПХ. 2023. Т. 96. № 2. С. 184. doi: 10.31857/S004446182302007X; Zhilin I.A., Chausov F.F., Lomova N.V., Kazantseva I.S., Isupov N.Yu., Averkiev I.K. // Russ. J. Appl. Chem. 2023. Vol. 96. N 2. P. 176. doi: 10.1134/S1070427223020089
  33. Сомов Н.В., Чаусов Ф.Ф., Казанцева И.С., Ломова Н.В., Бельтюков А.Н., Шумилова М.А., Суксин Н.Е., Ульянов А.И. // Кристаллография. 2023. Т. 68. № 2. С. 246. doi: 10.31857/S0023476123020169; Somov N.V., Chausov F.F., Kazantseva I.S., Lomova N.V., Bel’tukov A.N., Shumilova M.A., Suksin N.E., Ul’yanov A.I. // Crystallogr. Rep. 2023. Vol. 68. N 2. P. 259. doi: 10.1134/S1063774523020165
  34. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Под ред. Д. Бриггса, М.П. Сиха. М.: Мир, 1987. 598 с.
  35. Lange’s Handbook of Chemistry / Ed. J.A. Dean. New York: McGraw-Hill, 1998. 1424 p.
  36. Xu L., Wu P., Zhu X., Zhao G., Ren X., Wei Q., Xie L. // Corros. Sci. Vol. 207. Article no. 110563. doi 10.1016/ j.corsci.2022.110563.
  37. McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. Vol. 49. P. 1521. doi: 10.1021/ac50019a016
  38. Кузнецов Ю.И., Раскольников А.Ф. // Защита металлов. 1992. Т. 28. № 5. С. 707.
  39. Казанцева И.С., Чаусов Ф.Ф., Ломова Н.В., Воробьев В.Л. // Физикохимия поверхности и защита материалов. 2023. Т. 59. № 3. С. 330. doi: 10.31857/S0044185623700389; Kazantseva I.S., Chausov F.F., Lomova N.V., Vorob’yov V.L. // Protect. Met. Phys. Chem. Surf. 2023. Vol. 59. N 3. P. 493. doi: 10.1134/S2070205123700454
  40. Holmes W. // Anatom. Rec. 1943. Vol. 86. P. 157. doi: 10.1002/ar.1090860205
  41. Shirley D.A. // Phys. Rev. (B). 1972. Vol. 5. P. 4709. doi: 10.1103/PhysRevB.5.4709
  42. Wojdyr M. // J. Appl. Crystallogr. 2010. Vol. 43. P. 1126. doi: 10.1107/S0021889810030499

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The main structural fragments (a–c) and P2p XPS spectra (d–g) of the compounds ZnNTP (a, d), CdNTP (b, d), FeZnNTP (c, f), and FeCdNTP (c, g). Hydrogen atoms are not shown for clarity. Curves 1 correspond to the spectra of the initial reference compounds with the structure (a–c); curves 2 refer to the spectra of the corresponding compounds after etching with Ar+ ions with an energy of 1000 eV for 5 min.

Baixar (365KB)
3. Fig. 2. Fragments of the XPS spectra measured at room temperature (a) and under conditions of thermal action on the sample in situ (b), from the surface of a St3kp steel sample subjected to polarization in a borate-borate buffer solution (pH = 7.4) at E = 0.5 V.

Baixar (106KB)
4. Fig. 3. Spectra of Fe2p3/2 electrons measured during layer-by-layer etching of the surface of a St3kp steel sample subjected to polarization at a potential of E = 0.5 V in a borate-borate buffer solution (pH = 7.4).

Baixar (119KB)
5. Fig. 4. The most characteristic fragments of the XPS spectra of St3kp steel samples polarized in a borate-borate buffer solution (pH = 7.4) at E = 0.5 V with the addition of 5 g/l ZnNTP (a), 1 g/l CdNTP (b).

Baixar (183KB)
6. Fig. 5. P2p-electron spectra measured during layer-by-layer etching of the surface of St3kp steel samples polarized at a potential of E = 0.5 V in a borate-borate buffer solution (pH = 7.4) containing 5 g/l ZnNTP (a), 1 g/l CdNTP (b).

Baixar (228KB)
7. Fig. 6. Atomic fraction of phosphorus included in the composition of the initial inhibitors ZnNTP, CdNTP, and heterometallic complexes FeZnNTP, FeCdNTP, depending on the etching depth δ of passive films formed on St3kp steel samples in a borate-borate buffer solution (pH = 7.4) at a potential of E = 0.5 V with the addition of 5 g/l ZnNTP or 1 g/l CdNTP.

Baixar (79KB)
8. Fig. 7. Profiles of the elemental composition of the surface layers of St3kp steel samples subjected to polarization at a potential of E = 0.5 V in a borate-borate buffer solution (pH = 7.4) containing 5 g/l ZnNTP (a, b) and 1 g/l CdNTP (c, d).

Baixar (192KB)
9. Fig. 8. Anodic polarization curves measured for St3kp steel samples in a borate-borate buffer solution (pH = 7.4) with the addition of various concentrations of ZnNTP (a) and CdNTP (b) inhibitors; the numbers on the curves indicate the concentration of inhibitors in g/l.

Baixar (175KB)
10. Fig. 9. Micrographs of the surface of St3kp steel samples polarized in a borate-borate buffer solution (pH = 7.4) with the addition of 5 g/l ZnNTP at a potential of E = –0.1 V (a, b) and with the addition of 1 g/l CdNTP at a potential of E = 0.5 V (c, d).

Baixar (415KB)
11. Fig. 10. Scheme of formation and structure of passivating films on the surface of steel in a borate-borate buffer solution containing ZnNTP (a) and CdNTP (b).

Baixar (380KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024