Complexes of Bromine and Its Derivatives with Nitrogen-Containing Donors: A Quantum Chemical Study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Structural and thermodynamic characteristics of molecular donor-acceptor complexes of BrCl, Br2, IBr with nitrogen-containing Lewis bases are computed by using quantum chemical method M06-2X/def2-TZVP in the gas phase, benzene and acetonitrile solutions in the framework of SMD model. It is shown that the polarity of the solvent significantly influences the structural features and stabilization of the complex with respect to the dissociation process. In case of BrCl complexes with all studied Lewis bases the three center four electron N–Br–Cl bond is realized in acetonitrile solution.

Full Text

Restricted Access

About the authors

A. V. Pomogaeva

Saint Petersburg State University

Author for correspondence.
Email: a.y.timoshkin@spbu.ru
ORCID iD: 0000-0002-5131-4240
Russian Federation, Saint Petersburg, 199034

A. S. Lisovenko

Saint Petersburg State University

Email: a.y.timoshkin@spbu.ru
ORCID iD: 0000-0001-7443-0124
Russian Federation, Saint Petersburg, 199034

A. Yu. Timoshkin

Saint Petersburg State University

Email: a.y.timoshkin@spbu.ru
ORCID iD: 0000-0002-1932-6647
Russian Federation, Saint Petersburg, 199034

References

  1. Murray J.S., Paulsen K., Politzer P. // Proc. Indian Acad. Sci. (Chem. Sci.) 1994. Vol. 106. P. 267. doi: 10.1007/BF02840749
  2. Desiraju G.R., Shing Ho P., Kloo L., Legon A.C., Marquardt R., Metrangolo P., Politzer P., Resnati G., Rissanen K. // Pure Appl. Chem. 2013. Vol. 85. P. 1711. doi: 10.1351/PAC-REC-12-05-10
  3. Varadwaj P.R., Varadwaj A., Marques H.M., Yamashita K. // Cryst. Growth Des. 2024. Vol. 24. P. 5494. doi: 10.1021/acs.cgd.4c00228
  4. Ma Y.X., Yin H.L., Yang J., Lin H.T., Chen S.H., Zhou J., Zhuo S.P., Wang X.D. // Adv. Opt. Mater. 2022. Vol. 11. P. 2201000. doi: 10.1002/adom.202201000
  5. Tepper R., Schubert U.S. // Angew. Chem. Int. Ed. 2018. Vol. 57. P. 6004. doi: 10.1002/anie.201707986
  6. Yang H., Wong M.W. // Molecules. 2020. Vol. 25. P. 1045. doi: 10.3390/molecules25051045
  7. Mahmudov K.T., Gurbanov A.V., Guseinov F.I., Guedes da Silva M.F.C. // Coord. Chem. Rev. 2019. Vol. 387. P. 32. doi: 10.1016/j.ccr.2019.02.011
  8. Gropp C., Quigley B.L., Diederich F. // J. Am. Chem. Soc. 2018. Vol. 140. P. 2705. doi: 10.1021/jacs.7b12894
  9. Peluso P., Chankvetadze B. // Chem. Rev. 2022. Vol. 122. P. 13235. doi: 10.1021/acs.chemrev.1c00846
  10. Ivanov D.M., Bokach N.A., Kukushkin V.Yu., Frontera A. // Chem. Eur. J. 2022. Vol. 28. P. e202280262. doi: 10.1002/chem.202280262
  11. Teyssandier J., Mali K.S., De Feyter S. // ChemistryOpen. 2020. Vol. 9. P. 225. doi: 10.1002/open.201900337
  12. Costa P.J., Nunes R., Vila-Viçosa D. // Expert Opin. Drug. Discov. 2019. Vol. 14. P. 805. doi: 10.1080/17460441.2019.1619692
  13. Brammer L., Peuronen A., Roseveare T.M. // Acta Crystallogr. (C). 2023. Vol. 79. P. 204. doi: 10.1107/S2053229623004072
  14. Marstokk K.-M., Stromme K.O. // Acta Crystallogr. (B). 1968. Vol. 24. P. 713. doi: 10.1107/S0567740868003067
  15. Mascal M., Richardson J.L., Blake A.J., Li W.-S. // Tetrahedron Lett. 1996. Vol. 37. P. 3505. doi: 10.1016/0040-4039(96)00564-3
  16. Weinberger C., Hines R., Zeller M., Rosokha S.V. // Chem. Commun. 2018. Vol. 54. P. 8060, doi: 10.1039/C8CC04629H
  17. Kunkel F., Maichle-Mossmer C., Strahle J., Dehnicke K. // Z. anorg. allg. Chem. 2001. Vol. 627. P. 2445. doi: 10.1002/1521-3749(200111)627:11<2445::AID-ZAAC2445>3.0.CO;2-W
  18. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // Russ. J. Gen. Chem. 2024. Vol. 94. P. S40. doi: 10.1134/S1070363224140068
  19. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comp. Chem. 2025. Vol. 46. P. e27507. doi: 10.1002/jcc.27507
  20. Pröhm P., Berg W., Rupf S.M., Müller C., Riedel S. // Chem. Sci. 2023. Vol. 14. P. 2325. doi: 10.1039/D2SC06757A
  21. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comp. Chem. 2025. Vol. 46. P. e27549. doi: 10.1002/jcc.27549
  22. Pomogaeva A.V., Lisovenko A.S., Timoshkin A.Y. // J. Comput. Chem. 2024. Vol. 45. P. 903. doi: 10.1002/jcc.27300
  23. Reed A.E., Weinstock R.B., Weinhold F. // J. Chem. Phys. 1985. Vol. 83. P. 1736. doi: 10.1063/1.449486.
  24. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. Vol. 88. P. 899. doi: 10.1021/CR00088A005
  25. Prokudina Y.V., Davydova E.I., Virovets A., Stöger B., Peresypkina E., Pomogaeva A.V., Timoshkin A.Y. // Chem. Eur. J. 2020. Vol. 26. P. 16338. doi: 10.1002/chem.202002261
  26. Эмсли Дж. Элементы. М.: Мир, 1993.
  27. Bader R.F.W. Atoms in Molecules, A Quantum Theory. Oxford: Clarendon Press, 1990, p. 438.
  28. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. Vol. 120. P. 215. doi: 10.1007/s00214-007-0310-x
  29. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi: 10.1039/B508541A
  30. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (B). 2009. Vol. 113. P. 6378. doi: 10.1021/jp810292n
  31. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
  32. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. P. 580. doi: 10.1002/jcc.22885

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optimised geometries of donor-acceptor complexes: NEt3 - Br2 (a), NMe3 - Br2 (b), apy - Br2 (c), bpa - Br2 (d), Py - Br2 (e), bpe - Br2 (f), bipy - Br2 (g), pyz - Br2 (h), apy - Br2 (π) (i), Py - Br2 (π) (k), pyz - Br2 (π) (l), apy - Br2 (vdW) (m), Py - Br2 (vdW) (n), pyz - Br2 (vdW) (o). Inter-nuclear distances are given in Å, angles are given in degrees. The M06-2X/def2-TZVP level of theory has been used. Gas phase values are given in regular font, for benzene solution - in bold, for acetonitrile solution - in italics.

Download (103KB)
3. Fig. 2. Dependence of E(2) on NCC for donor-acceptor bonds in σ- (white fill) and π-complexes (grey fill) in the gas phase. The line is an approximation by the exponential function y = 94452 ē7.729x, R² = 0.969. Level of theory M06-2X/def2-TZVP.

Download (12KB)
4. Fig. 3. Dependence of the enthalpy of dissociation ΔdisH°298 on the value |V(r)|/G(r) calculated at the critical points of N-X bonds in the gas phase for σ-complexes (white fill) and π-complexes (grey fill). Linear approximation y = 99.018x - 74.924, R² = 0.964. Level of theory M06-2X/def2-TZVP.

Download (11KB)
5. Fig. 4. Molecular orbitals of the BrCl-NEt3 complex: HOMO-7 in acetonitrile (a), HOMO-9 in the gas phase (b). Level of theory M06-2X/def2-TZVP.

Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences