Effective synthesis of 3,5-bis(sulfanylmethyl)-1,4-oxaselenanes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Methods for the synthesis of 3,5-bis(organylsulfanylmethyl)-1,4-oxaselenanes based on diallyl ether, selenium dibromide and thiocarbamide using a bis-isothiouronium derivative as a source of the corresponding dithiolate anions, which were involved into a nucleophilic addition reaction to acrylates and substitution with various alkyl halides. As a result, methods for obtaining dialkyl derivatives in 90–98% yields and the products of addition of dithiolate anions to acrylates in 74–91% yields were developed.

全文:

受限制的访问

作者简介

А. Khabibulina

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: almah@irioch.irk.ru
ORCID iD: 0000-0003-3523-9794
俄罗斯联邦, 664033, Irkutsk

参考

  1. Chuai H., Zhang S.-Q., Bai H., Li J., Wang Y., Sun J., Wen E., Zhang J., Xin M. // Eur. J. Med. Chem. 2021. Vol. 223. Р. 113621. doi: 10.1016/j.ejmech.2021.113621
  2. Ornelio R. // Curr. Med. Chem. 2023. Vol. 30. N 21. Р. 2355. doi: 10.2174/092986733021230301162224
  3. Pop A., Silvestru C., Silvestru A. // Phys. Sci. Rev. 2019. Vol. 4. N 5. Р. 20180061. doi: 10.1515/psr-2018-0061
  4. Singh B.G., Gandhi V.V., Phadnis P.P., Kunwa A. // New J. Chem. 2022. Vol. 46. N 38. P. 18447. doi org/10.1039/D2NJ02744E
  5. Dhau J.S., Singh A., Brandão P., Felix V. // Inorg. Chem. Commun. 2021. Vol. 133. Р. 108942. doi 10.1016/ j.inoche.2021.108942
  6. Azad G.K., Tomar R.S. // Mol. Biol. Rep. 2014. Vol. 41. P. 4865. doi: 10.1007/s11033-014-3417-x
  7. Weglarz-Tomczak E., Tomczak J.M., Talma M., Burda-Grabowska M., Giurg M., Brul S. // Sci. Rep. 2021. Vol. 11. P. 3640. doi: 10.1038/s41598-021-83229-6
  8. Chen Y., Peng Y., Zhang J., Fu L. // Nucleosides, Nucleic Acids. 2008. Vol. 27. N 8. P. 1001. doi: 10.1080/15257770802088803
  9. Zhang J., Zhang Y., Huang Y., Wang D., Zuo Sh., Xu H., He Zh., Kan Q., Liu X., Sun B. // Chem. Engineering J. 2023. Vol. 458. N 52. Р. 141510. doi I10.1016/ j.cej.2023.141510
  10. Cotgreave I.A., Moldeus P., Engman L., Hallberg A. // Biochem. Pharmacol. 1991. Vol. 42. N 7. P. 1481. doi: 10.1016/0006-2952(91)90462-e
  11. Tanini D., Scarpelli S., Ermini E., Capperucci A. // Adv. Synth. Catal. 2019. Vol. 361. N 10. P. 2337. doi: 10.1002/adsc.201900168
  12. Braverman S., Cherkinsky M., Kalenda Y., Gottlieb H.E., Mats E.M., Gruzman A.,Goldberg I., Sprecher M. // J. Phys. Org. Chem. 2013. Vol. 26. N 2. P. 102. doi: 10.1002/poc.2952
  13. Li Y.-M., Zhang Y., Luan T., Liu C.-F. // Chem. Biodivers. 2022. Vol. 19. N 4. 202100831. doi: 10.1002/cbdv.202100831
  14. Amosova S.V., Filippov A.A., Makhaeva N.A., Albanov A.I., Potapov V.A. // Beilstein J. Org. Chem. 2020. Vol. 16. N 1. P. 515. doi: 10.3762/bjoc.16.47
  15. Amosova S.V., Novokshonova I.A., Penzik M.V., Filippov A.S., Albanov A.I., Potapov V.A. // Tetrahedron Lett. 2017. Vol. 58. N 46. P. 4381. doi 10.1016/ j.tetlet.-2017.10.011
  16. Amosova S.V., Filippov A.S., Potapov V.A., Penzik M.V., Makhaeva N.A., Albanov A.I. // Synthesis. 2019. Vol. 51. N 8. P. 1832. doi: 10.1055/s-0037-1610683
  17. Potapov V.A., Musalov M.V. // Catalysts. 2022. Vol. 12. N 9. P. 1032. doi: 10.3390/catal12091032
  18. Amosova S.V., Filippov A.S., Potapov V.A., Albanov A.I. // Catalysts. 2022. Vol. 12. N 10. P. 1236. doi: 10.3390/catal12101236
  19. Musalov M.V., Potapov V.A. // Int. J. Mol. Sci. 2022. Vol. 23. N 24. P. 15629 doi: 10.3390/ijms232415629
  20. Musalov M.V., Amosova S.V., Potapov V.A. // Int. J. Mol. Sci. 2023. Vol. 24. N 24. P. 17485. doi: 10.3390/ijms242417485
  21. Потапов В.А., Мусалов М.В., Абрамова Л.В., Мусалова М.В., Русаков Ю.Ю., Амосова С.В. // ХГС. 2013. N 12. С. 1965; Potapov V.A., Musalov M.V., Abramova E.V., Rusakov Yu.Yu., Amosova S.V. // Chem. Heterocycl. Compd. 2014. Vol. 49. N 12. P. 1821. doi: 10.1007/s10593-014-1435-1.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (40KB)
3. Scheme 2.

下载 (117KB)
4. Scheme 3.

下载 (93KB)

版权所有 © Russian Academy of Sciences, 2024