Synthesis of Tetraoxacalixarenes Based on Ethyl Pentafluorobenzoate. Effect of Solvent Polarity and Nature of the Base

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The direction of reaction of ethyl pentafluorobenzoate with orcinol depends largely on the polarity of the solvent and the nature of the base. In acetonitrile the reaction proceeds exclusively in the para-position of ethyl pentafluorobenzoate, while in the dioxane–Na2CO3 system the products of substitution of fluorine atoms in the ortho-position are predominantly formed. The reaction of triphenyl with orcinol in the dioxane–K2CO3 system leads to the formation of a mixture of possible fluorine-containing isomeric tetraoxacalixarenes. The corresponding fluorine-containing tetraoxacalixarenes with carboxyl group were obtained by hydrolysis of ester groups.

About the authors

H.-Z. Han

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University

Email: kovtonuk@nioch.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

V. N. Kovtonyuk

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kovtonuk@nioch.nsc.ru
Russian Federation, Novosibirsk, 630090

Yu. V. Gatilov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kovtonuk@nioch.nsc.ru
ORCID iD: 0000-0002-4128-7293
Russian Federation, Novosibirsk, 630090

V. I. Krasnov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kovtonuk@nioch.nsc.ru
ORCID iD: 0000-0002-5387-8365
Russian Federation, Novosibirsk, 630090

References

  1. Maes W., Dehaen W. // Chem. Soc. Rev. 2008. Vol. 37. N 11. P. 2393. doi: 10.1039/B718356A
  2. Wang M.X. // Chem. Commun. 2008. N 38. P. 4541. doi: 10.1039/B809287G
  3. Wang M.X. // Acc. Chem. Res. 2012. Vol. 45. N 2. P. 182. doi: 10.1021/ar200108c
  4. Hudson R., Katz J.L. In: Calixarenes and Beyond / Eds. P. Neri, J.L. Sessler, M.X. Wang. Cham: Springer International Publishing, 2016. P. 399. doi 10.1007/ 978-3-319-31867-7
  5. Dey S., Kumar A., Mondal P.K., Chopra D., Roy R., Jindani S., Ganguly B., Mayya C., Bhatia D., Jain V.K. // Sci. Rep. 2022. Vol. 12. P. 17119. doi: 10.1038/s41598-022-21407-w
  6. Yang H.-B., Wang D.-X., Wang Q.-Q., Wang M.-X. // J. Org. Chem. 2007. Vol. 72. N 10. P. 3757. doi: 10.1021/jo070001a
  7. Sang Q., Yang J. // Chin. J. Chem. 2012. Vol. 30. N 7. P. 1410. doi: 10.1002/cjoc.201200057
  8. Panchal M., Kongor A., Athar M., Mehta V., Jha P.C., Jain V.K. // New J. Chem. 2018. Vol. 42. P. 311. doi: 10.1039/C7NJ02828H
  9. Dong P.-P., Liu Y.-Y., Peng Q.-C., Li H.-Y., Li K., Zang S.-Q., Tang B.-Z. // Dalton Trans. 2023. Vol. 52. N 7. P. 1913. doi: 10.1039/d2dt03382h
  10. Luo N., Ao Y.-F., Wang D.-X., Wang Q.-Q. // Chem. Asian J. 2021. Vol. 16. N 22. P. 3599. doi: 10.1002/asia.202100920
  11. Genc H.N. // RSC Adv. 2019. Vol. 9. N 36. P. 2163. doi: 10.1039/C9RA03029H
  12. Sommer N., Staab H.A. // Tetrahedron. Lett. 1966. Vol. 7. N 25. P. 2837. doi: 10.1016/S0040-4039(01)99870-3
  13. Ma J.-X., Fang X., Xue M., Yang Y. // Org. Biomol. Chem. 2019. Vol. 17. N 20. P. 5075. doi: 10.1039/C9OB00613C
  14. Wang D.-X., Wang Q.-Q., Han Y.-C., Wang Y.-L., Huang Z.-T., Wang M.-X // Chem. Eur. J. 2010. Vol. 16. N 44. P. 13053. doi: 10.1002/chem.201002307
  15. Chambers R.D., Hoskin P.R., Kenwright A.R., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // Org. Biomol. Chem. 2003. Vol. 1. N 12. P. 2137. doi: 10.1039/B303443G
  16. Chambers R.D., Khalil A., Richmond P., Sandford G., Yufit D.S., Howard J.A.K. // J. Fluor. Chem. 2004. Vol. 125. N 5. P. 715. doi: 10.1016/j.jfluchem.2003.12.007
  17. Kovtonyuk V.N., Gatilov Y.V. // J. Fluor. Chem. 2017. Vol. 199. P. 52. doi: 10.1016/j.jfluchem.2017.04.010
  18. Kovtonyuk V.N., Gatilov Y.V., Salnikov G.E., Amosov E.V. // J. Fluor. Chem. 2019. Vol. 222–223. P. 59. doi 10.1016/ j.jfluchem.2019.04.011
  19. Brook D.M. // J. Fluorine Chem. 1997. Vol. 86. N 1. P. 1. doi: 10.1016/S0022-1139(97)00006-7
  20. Кобрина Л.С., Фурин Г.Г., Якобсон Г.Г. // ЖОрХ 1970. Т. 6. № 3. С. 512.
  21. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V. // J. Fluor. Chem. 2022. Vol. 261–262. Art. no. 110022. doi: 10.1016/j.jfluchem.2022.110022
  22. Ковтонюк В.Н., Хань Х., Гатилов Ю.В. // ЖОрХ 2020. Т. 56. № 7. С. 1030; Kovtonyuk V.N., Han H.-Z., Gatilov Y.V. // Russ. J. Org. Chem. 2020. Vol. 56. N 7. P. 1153. doi: 10.1134/S1070428020070052
  23. Rossom W.V., Kishore L., Robeyns K., Meervelt L.V., Dehaen W., Maes W. // Eur. J. Org. Chem. 2010. N 21. P. 4122. doi: 10.1002/ejoc.201000460
  24. Han H.-Z., Kovtonyuk V.N., Gatilov Y.V., Andreev R.V., Nefedov A.A. // J. Fluor. Chem. 2024. Vol. 273. Art. no. 110235. doi: 10.1016/j.jfluchem.2023.110235
  25. Wang Q.-Q., Wang D.-X., Zheng Q.-Y., Wang M.-X. // Org. Lett. 2007. Vol. 9. N 15. P. 2847. doi: 10.1021/ol0710008
  26. Pan S., Wang D.-X., Zhao L., Wang M.-X. // Tetrahedron 2012. Vol. 68. N 46. P. 9464. doi: 10.1016/j.tet.2012.08.069
  27. Bruker AXS Inc. APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11); Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000–2012.
  28. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. Pt. 1. P. 3. doi: 10.1107/S2053229614024218

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences