Nanofibers based on cellulose acetates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of cellulose diacetate solutions in acetone and acetone–water mixtures at ratios of 95:5, 93.5:7.5 and 90:10 were studied. The optimal concentrations of cellulose diacetate solution for the formation of nanofibers from a mixture of water and acetone with a water content of 7.5 wt% were found. Cellulose diacetate nanofibers were obtained in the form of nonwoven materials with an average nanofiber diameter of 350±10 nm. In order to obtain cellulose nanofibers with a thread diameter of 350–400 nm, cellulose diacetate nanofibers were hydrolyzed in a 0.1 M potassium hydroxide solution.

Full Text

Restricted Access

About the authors

A. A. Sarymsakov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0003-4562-7280
Uzbekistan, Tashkent, 100128

A. I. Shukurov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-2889-0258
Uzbekistan, Tashkent, 100128

N. Sh. Ashurov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0001-5246-434X
Uzbekistan, Tashkent, 100128

Kh. E. Yunusov

Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: sarimsakov1948@mail.ru
ORCID iD: 0000-0002-4646-7859
Uzbekistan, Tashkent, 100128

References

  1. Иноземцева О.А., Сальковский Ю.Е., Северюхина А.Н., Видяшева И.В., Петрова Н.В., Метвалли Х.А., Стецюра И.Ю., Горин Д.А. // Усп. хим. 2015. Т. 84. № 3. С. 251; Inozemtseva O.A., Salkovskiy Y.E., Severyukhina A.N., Vidyasheva I.V., Petrova N.V., Metwally H.A., Stetciura I.Y., Gorin D.A. // Russ. Chem. Rev. 2015. Vol. 84. N 3. P. 251. doi: 10.1070/RCR4435
  2. Kadomae Y., Taniguchi T., Sugimoto M., Koyama K. // Int. Polym. Proc. 2008. Vol. 23. P. 377.
  3. Megelski S., Stephens J.S., Rabolt J.F., Bruce C.D. // Macromolecules. 2002. Vol. 35. P. 8456. doi: 10.1021/ma020444a
  4. Li D., Xia Y. // Adv. Mater. 2004. Vol. 16. P. 1151. doi: 10.1002/adma.200400719
  5. Sill T.J., Recum H.V. // Biomaterials. 2008. Vol. 29. N 13. P. 1989. doi: 10.1016/j.biomaterials.2008.01.011
  6. Peranidze K., Safronova T.V., Kildeeva N.R. // Polymers. 2023. Vol. 15. P. 1174. doi: 10.3390/polym15051174
  7. Chen W., Ma H., Xing B. // Int J Biol Macromol. 2020. Vol. 20. P. 33121. doi: 10.1016/j.ijbiomac.2020.04.249
  8. Lee J., Moon J.Y., Lee J.C., Hwang T.I., Park C.H., Kim C.S. // Carbohydr. Polym. 2021. doi 10.1016/ j.carbpol.2020.117191
  9. Петров А.В., Симонов-Емельянов И.Д., Филатов Ю.Н. // Вестн. МИТХТ. 2012. Т. 7. № 5. С. 103.
  10. Юданова Т.Н., Филатов Ю.Н., Афанасов И.М. // Пласт. массы. 2013. № 9. С. 57.
  11. Ergashovich Y.K., Abdupatto O’g’li A.A., Shodievich A.N. // Polym. Adv. Technol. 2024. Vol. 35. N 7. P. e6496. doi: 10.1002/pat.6496
  12. Lyu Q., Peng B., Xie Z., Du S., Zhang L., Zhu J. // ACS Appl. Mater. Interfaces. 2020. Vol. 23. P. 57373. doi: 10.1021/acsami.0c17931
  13. Wsoo M.A., Shahir S., Mohd S.P., Nayan H.M., Razak I.A. // Carbohydr. Res. 2020. Vol. 491. P. 107978. doi 10.1016/ j.carres.2020.107978
  14. Vaseashta A. // Appl. Phys. Lett. 2007. Vol. 90. P. 9. doi: 10.1063/1.2709958
  15. Ольхов А.А., Староверова О.В., Гольдштрах М.А., Хватов А.В., Гумаргалиева К.З., Иорданский А.Л. // Хим. физика. 2016. Т. 35. № 10. С. 53.
  16. Crabbe-Mann M., Tsaoulidis D., Parhizkar M., Edirisinghe M. // Cellulose 2018. Vol. 25. P. 1687. doi: 10.1007/s10570-018-1673-y
  17. Um-i-Zahra S., Shen X.X., Li H., Zhu L. // J. Polym. Res. 2014. Vol. 21. P. 602. doi: 10.1007/s10965-014-0602-5
  18. Wang X.Y., Drew C., Lee S.H., Senecal K.J., Kumar J., Sarnuelson L.A. // Nano Lett. 2002. Vol. 2. P. 1273. doi: 10.1021/nl020216u
  19. Liu H.Q., Hsieh Y.L. // J. Polym. Sci. (B). 2002. Vol. 40. P. 2119. doi: 10.1002/polb.10261
  20. Son W.K., Youk J.H., Lee T.S., Park W.H. // J. Polym. Sci. (B). 2004. Vol. 42. P. 5. doi: 10.1002/polb.10668
  21. Тагер А.А. Физикохимия полимеров. М.: Химия, 1978. 544 с.
  22. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров. М.: Химия, 1996. 432 с.
  23. Голубев А.Е., Ларина Ю.Н., Кувшинова С.А., Бурмистров В.А. // Изв. вузов. Сер. хим. и химическая технология. 2015. Т. 58. № 10. С. 33.
  24. Потехина Л.Н., Седелкин В.М. // Вестн. СГТУ. 2011. № 1. С. 52.
  25. Мамажанов Г.О. Разработка технологии получения лакокрасочных материалов из нитро- и диацетатцеллюлозы. Наманган, 2022. 122 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the viscosity of cellulose diacetate solutions on the concentration of the acetone-water solvent (%): 95:5 (1), 92.5:7.5 (2), 90:10 (3).

Download (67KB)
3. Fig. 2. Dependence of the viscosity of cellulose diacetate solutions of different concentrations (1 – 5%, 2 – 10%, 3 – 15%) on the thermodynamic quality of the solvent.

Download (60KB)
4. Fig. 3. Rheograms of cellulose diacetate (DAC) solutions of different concentrations in an acetone-water mixture at the following mass ratios: 1 – DAC 5% (90:10), 2 – DAC 5% (92.5:7.5), 3 – DAC 5% (95:5), 4 – DAC 10% (90:10), 5 – DAC 10% (92.5:7.5), 6 – DAC 10% (95:5), 7 – DAC 15% (90:10), 8 – DAC 15% (92.5:7.5), 9 – DAC 15% (95:5).

Download (115KB)
5. Fig. 4. SEM images of nanofibers obtained from 5% cellulose diacetate solutions at different magnifications: (a) ×1200, (b) ×3700.

Download (196KB)
6. Fig. 5. SEM images of nanofibers obtained from 10% cellulose diacetate solutions at different magnifications: (a) ×500, (b) ×1000.

Download (266KB)
7. Fig. 6. SEM micrographs of cellulose nanofibers obtained from 10% cellulose diacetate solutions containing 5 (a), 7.5 (b) and 10% (c) water in acetone after deacetylation with 0.1 M aqueous KOH solution.

Download (178KB)
8. Fig. 7. IR spectra of cellulose diacetate nanofibers (1) and cellulose nanofibers (2).

Download (113KB)
9. Fig. 8. X-ray diffraction patterns of cellulose nanofibers (1) and cellulose diacetate (2).

Download (59KB)

Copyright (c) 2024 Russian Academy of Sciences