Clustering of organoleptic quality evaluations of red and white wines by physicochemical parameters using statistica software
- 作者: Bondarev N.V.1
-
隶属关系:
- V.N. Kharkiv National University
- 期: 卷 93, 编号 11 (2023)
- 页面: 1796-1804
- 栏目: Articles
- URL: https://kazanmedjournal.ru/0044-460X/article/view/667297
- DOI: https://doi.org/10.31857/S0044460X23110161
- EDN: https://elibrary.ru/PCZYWD
- ID: 667297
如何引用文章
详细
Organoleptic evaluations in a ten-point scale of wine experts and experimental physicochemical parameters of red (1599 samples) and white (4898 samples) wines of Portuguese manufacturers were analyzed using STATIS-TICA sofware. Methods of agglomerative and iterative ( k -means algorithm) clustering revealed the grouping of similar wine samples into three, four and six clusters depending on the Euclidean distance of association. The quantitative filling of clusters with samples of bad wines (grades 3 and 4), normal wines (grades 5 and 6) and good wines (grades 7, 8, 9) was established. Neural network (MLP) and discriminant analyzes (DA) were performed; algorithms of classification trees (CT), support vector machines (SVM), naive Bayesian classification (NBC) and nearest neighbors (kNN) were involved. The best performance was demonstrated by neural network models. Multilayer perceptorons classifiers were trained: for red wines - MLP 11-7-3, MLP 11-13-4, MLP 11-14-6; for white wines - MLP 11-9-3, MLP 11-5-4, MLP 11-9-6. The properties of wines, whose contribution to the separating power of classifiers is decisive, are revealed. The ranges of changes in physicochemical parameters in three clusters of red and white wines for bad, normal and good wines were given.
参考
- Косюра В.Т., Донченко Л.В., Надыкта В.Д. Основы виноделия: учебное пособие для вузов. М.: Юрайт. 2023. 422 с.
- Paracelsus Т. // 1965. Werke. Bd. 2. Darmstadt. S. 508.
- Forina M., Armanino С., Casting M., Ubigli M. // Vitis. 1986. Vol. 25. P. 189. doi: 10.5073/vitis.1986.25.189-201
- Sun L.X., Danzer K., Thiel G. // Fresenius J. Anal. Chem. 1997. Vol. 359. P. 143. doi: 10.1007/s002160050551
- Ebeler S.E. // Food Rev. Int. 2007. Vol. 17. N 1. P. 45. doi: 10.1081/FRI-100000517
- Legin A., Rudnitskaya V., Lvova L., Vlasov Yu., Di Natale C., D'Amico A. // Anal. Chim. Acta. 2003. Vol. 484. N 1. P. 33. doi: 10.1016/S0003-2670(03)00301-5
- Cortez P., Cerderia A., Almeida A., Matos V., Reis J. // Decision Support Systems. 2009. Vol. 47. N 4. P. 547. doi: 10.1016/j.dss.2009.05.016
- Appalasamy P., Mustapha A., Rizal N., Johari F., Mansor A. // J. Appl. Sci. 2012. Vol. 12. N 6. P. 598. doi: 10.3923/jas.2012.598.601
- Baykal H., Yildirim H.K. // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. N 5. P. 415. doi: 10.1080/10408398.2010.540359
- Якуба Ю.Ф., Каунова А.А., Темердашев З.А., Титаренко В.О., Халафян А.А. Аналитика и контроль. 2014. Т. 18. № 4. С. 344.
- Nebot À., Mugica F., Escobet A. // 5th Int. Conf. SIMULTECH. Colmar, France. 2015. Р. 501. doi: 10.5220/0005551905010507
- Er Y., Atasoy A. // IJISAE. 2016. Vol. 4 (Special Issue). P. 23. doi: 10.18201/ijisae.265954
- Халафян А.А., Темердашев З.А., Гугучкина Т.И., Якуба Ю.Ф. // Аналитика и контроль. 2017. Т. 21. № 2. С. 161. doi: 10.15826/analitika.2017.21.2.010
- Gupta Y. // Procedia Comput. Sci. 2018. Vol. 125. P. 305. doi: 10.1016/j.procs.2017.12.041
- Ahammed B., Abedin M. // Model Assist. Stat. Appl. 2018. Vol. 13. N 1. P. 85. doi: 10.3233/MAS-170420
- Луценко Е.В., Печурина Е.К., Сергеев А.Э. // Научный журнал КубГАУ. 2019. № 149(05). С. 2. doi: 10.21515/1990-4665-149-015
- Shruthi P. // 1st Int. Сonf. ICATIECE. Bangalore, India. 2019. doi: 10.1109/ICATIECE45860.2019.9063846
- Chao Y., Li K., Jia G. // J. Phys. Conf. Ser. 2020. Vol. 1684. N 1. 012067. doi: 10.1088/1742-6596/1684/1/012067
- Kumar S., Agrawal K., Mandan N. // Int. Conf. ICCCI. Coimbatore, India. 2020. doi: 10.1109/ICCCI48352.2020.9104095
- Zhang S., Shao C., Xiao W. // 3rd Int. Conf. ICAIBD. Chengdu, China. 2020. P. 128. doi: 10.1109/ICAIBD49809.2020.9137477
- Мильман Б.Л., Журкович И.К. // ЖАХ. 2020. Т. 75, № 4. С. 316. doi: 10.31857/S0044450220020139
- Milman B.L., Zhurkovich I.K. // J. Anal. Chem. 2020. Vol. 75. N 4. P. 316. doi: 10.31857/S0044450220020139
- Mor N.S., Asras T., Gal E., Demasia T., Tarab E., Ezekiel N., Nikapros O., Semimufar O., Gladky E., Karpenko M., Sason D., Maslov D., Mor O. // agriRxiv. 2022. Р. 1. doi: 10.31220/agriRxiv.2022.00125
- Machine Learning Repository files. https://archive.ics.uci.edu/ml/datasets/Wine+Quality
- Боровиков В.П. Популярное введение в современный анализ данных и машинное обучение на STATISTICA. М.: Горячая линия-Телеком, 2019. 354 с.
- StatSoft, Inc. Электронный учебник по статистике. М.: StatSoft. WEB: http://www.statsoft.ru/home/textbook/default.htm
- Бондарев Н.В. // ЖОХ. 2021. Т. 91. Вып. 3. С. 449. doi: 10.31857/S0044460X21030112
- Bondarev N.V. // J. Gen. Chem. 2021. Vol. 91. N 3. P. 409. doi: 10.1134/S1070363221030117
补充文件
