Clustering of organoleptic quality evaluations of red and white wines by physicochemical parameters using statistica software

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Organoleptic evaluations in a ten-point scale of wine experts and experimental physicochemical parameters of red (1599 samples) and white (4898 samples) wines of Portuguese manufacturers were analyzed using STATIS-TICA sofware. Methods of agglomerative and iterative ( k -means algorithm) clustering revealed the grouping of similar wine samples into three, four and six clusters depending on the Euclidean distance of association. The quantitative filling of clusters with samples of bad wines (grades 3 and 4), normal wines (grades 5 and 6) and good wines (grades 7, 8, 9) was established. Neural network (MLP) and discriminant analyzes (DA) were performed; algorithms of classification trees (CT), support vector machines (SVM), naive Bayesian classification (NBC) and nearest neighbors (kNN) were involved. The best performance was demonstrated by neural network models. Multilayer perceptorons classifiers were trained: for red wines - MLP 11-7-3, MLP 11-13-4, MLP 11-14-6; for white wines - MLP 11-9-3, MLP 11-5-4, MLP 11-9-6. The properties of wines, whose contribution to the separating power of classifiers is decisive, are revealed. The ranges of changes in physicochemical parameters in three clusters of red and white wines for bad, normal and good wines were given.

作者简介

N. Bondarev

V.N. Kharkiv National University

Email: n_bondarev@ukr.net

参考

  1. Косюра В.Т., Донченко Л.В., Надыкта В.Д. Основы виноделия: учебное пособие для вузов. М.: Юрайт. 2023. 422 с.
  2. Paracelsus Т. // 1965. Werke. Bd. 2. Darmstadt. S. 508.
  3. Forina M., Armanino С., Casting M., Ubigli M. // Vitis. 1986. Vol. 25. P. 189. doi: 10.5073/vitis.1986.25.189-201
  4. Sun L.X., Danzer K., Thiel G. // Fresenius J. Anal. Chem. 1997. Vol. 359. P. 143. doi: 10.1007/s002160050551
  5. Ebeler S.E. // Food Rev. Int. 2007. Vol. 17. N 1. P. 45. doi: 10.1081/FRI-100000517
  6. Legin A., Rudnitskaya V., Lvova L., Vlasov Yu., Di Natale C., D'Amico A. // Anal. Chim. Acta. 2003. Vol. 484. N 1. P. 33. doi: 10.1016/S0003-2670(03)00301-5
  7. Cortez P., Cerderia A., Almeida A., Matos V., Reis J. // Decision Support Systems. 2009. Vol. 47. N 4. P. 547. doi: 10.1016/j.dss.2009.05.016
  8. Appalasamy P., Mustapha A., Rizal N., Johari F., Mansor A. // J. Appl. Sci. 2012. Vol. 12. N 6. P. 598. doi: 10.3923/jas.2012.598.601
  9. Baykal H., Yildirim H.K. // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. N 5. P. 415. doi: 10.1080/10408398.2010.540359
  10. Якуба Ю.Ф., Каунова А.А., Темердашев З.А., Титаренко В.О., Халафян А.А. Аналитика и контроль. 2014. Т. 18. № 4. С. 344.
  11. Nebot À., Mugica F., Escobet A. // 5th Int. Conf. SIMULTECH. Colmar, France. 2015. Р. 501. doi: 10.5220/0005551905010507
  12. Er Y., Atasoy A. // IJISAE. 2016. Vol. 4 (Special Issue). P. 23. doi: 10.18201/ijisae.265954
  13. Халафян А.А., Темердашев З.А., Гугучкина Т.И., Якуба Ю.Ф. // Аналитика и контроль. 2017. Т. 21. № 2. С. 161. doi: 10.15826/analitika.2017.21.2.010
  14. Gupta Y. // Procedia Comput. Sci. 2018. Vol. 125. P. 305. doi: 10.1016/j.procs.2017.12.041
  15. Ahammed B., Abedin M. // Model Assist. Stat. Appl. 2018. Vol. 13. N 1. P. 85. doi: 10.3233/MAS-170420
  16. Луценко Е.В., Печурина Е.К., Сергеев А.Э. // Научный журнал КубГАУ. 2019. № 149(05). С. 2. doi: 10.21515/1990-4665-149-015
  17. Shruthi P. // 1st Int. Сonf. ICATIECE. Bangalore, India. 2019. doi: 10.1109/ICATIECE45860.2019.9063846
  18. Chao Y., Li K., Jia G. // J. Phys. Conf. Ser. 2020. Vol. 1684. N 1. 012067. doi: 10.1088/1742-6596/1684/1/012067
  19. Kumar S., Agrawal K., Mandan N. // Int. Conf. ICCCI. Coimbatore, India. 2020. doi: 10.1109/ICCCI48352.2020.9104095
  20. Zhang S., Shao C., Xiao W. // 3rd Int. Conf. ICAIBD. Chengdu, China. 2020. P. 128. doi: 10.1109/ICAIBD49809.2020.9137477
  21. Мильман Б.Л., Журкович И.К. // ЖАХ. 2020. Т. 75, № 4. С. 316. doi: 10.31857/S0044450220020139
  22. Milman B.L., Zhurkovich I.K. // J. Anal. Chem. 2020. Vol. 75. N 4. P. 316. doi: 10.31857/S0044450220020139
  23. Mor N.S., Asras T., Gal E., Demasia T., Tarab E., Ezekiel N., Nikapros O., Semimufar O., Gladky E., Karpenko M., Sason D., Maslov D., Mor O. // agriRxiv. 2022. Р. 1. doi: 10.31220/agriRxiv.2022.00125
  24. Machine Learning Repository files. https://archive.ics.uci.edu/ml/datasets/Wine+Quality
  25. Боровиков В.П. Популярное введение в современный анализ данных и машинное обучение на STATISTICA. М.: Горячая линия-Телеком, 2019. 354 с.
  26. StatSoft, Inc. Электронный учебник по статистике. М.: StatSoft. WEB: http://www.statsoft.ru/home/textbook/default.htm
  27. Бондарев Н.В. // ЖОХ. 2021. Т. 91. Вып. 3. С. 449. doi: 10.31857/S0044460X21030112
  28. Bondarev N.V. // J. Gen. Chem. 2021. Vol. 91. N 3. P. 409. doi: 10.1134/S1070363221030117

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023