Photochemical production of molecular hydrogen in the presence of substituted acridine salts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The photocatalytic properties of new representatives of the family of metal-free catalysts, 10-hydro-9-phenylacridine, 10-methyl-9-phenylacridinium chloride, and 10-phenyl-9-phenylacridinium chloride, were studied with respect to the reaction of molecular hydrogen generation in the presence of acids of different strength (HClO4, CH3SO3H, and CF3COOH) and reducing agents ([Bu4N]Cl, [Bu4N]Br, and [Bu4N]I). It was found that the strength of acids (p K a) and the nature of the reducing agent ( E 0) significantly affect the efficiency, i.e. turnover frequency (TOF), of the process under study. The amount of formed molecular hydrogen reaches its maximum in the case of the combination HClO4 and [Bu4N]I, characterized by minimal p K a and E0 values, respectively. The influence of the nature of substituents at the nitrogen atom in 9-phenylacridine on the efficiency of the molecular hydrogen production was analyzed. It was shown that the limiting stage of the process is the protonation of the formed radical.

Sobre autores

A. Dolganov

N.P. Ogarev National Research Mordovia State University

Email: dolganov_sasha@mail.ru

L. Klimaeva

N.P. Ogarev National Research Mordovia State University

E. Okina

N.P. Ogarev National Research Mordovia State University

A. Knyazev

Lobachevsky State University

Bibliografia

  1. Spasiano D., Marotta R., Malato S., Fernandez P.I., Somma D. // Appl. Catal. (B). 2015. Vol. 170-171. P. 90. doi: 10.1016/j.apcatb.2014.12.050
  2. Goff A.L., Artero V., Jousselme B., Tran P.D., Guillet N., Métayé R., Fihri A., Palacin S., Fontecave M. // Science. 2009. Vol. 326. P. 1384. doi: 10.1126/science.1179773
  3. Lazarides T. // J. Am. Chem. Soc. 2009. Vol. 131. P. 9192. doi: 10.1021/ja903044n
  4. Esswein A.J., Nocera D.G. // Chem. Rev. 2007. Vol. 107. N 10. P. 4022. doi: 10.1021/cr050193e
  5. Krishnan C.V., Sutin N. // J. Am. Chem. Soc. 1981. Vol. 103. P. 2141. doi: 10.1021/ja00398a066
  6. Krishnan C.V., Brunschwig B.S., Creutz C., Sutin N. // J. Am. Chem. Soc. 1985. Vol. 107. P. 2005. doi: 10.1021/ja00293a035
  7. Lei J.-M., Luo S.-P., Zhan S.-Z. // Polyhedron. 2018. Vol. 154. P. 295. doi: 10.1016/j.poly.2018.07.040
  8. Gueret R., Poulard L., Oshinowo M., Chauvin J., Dahmane M., Dupeyre G., Lainé P.P., Fortage J., Collomb M.-N. // ACS Catal. 2018. Vol. 8. P. 3792. doi: 10.1021/acscatal.7b04000
  9. Takizawa S., Pérez-Bolívar C., Anzenbacher P.Jr., Murata S. // Eur. J. Inorg. Chem. 2012. Vol. 2012. P. 3975. doi: 10.1002/ejic.201200474
  10. Yu Z.-T., Yuan Y.-J., Cai J.-G., Zou Z.-G. // Chem. Eur. J. 2013. Vol. 19. P. 1303. doi: 10.1002/chem.201203029
  11. Yuan Y.-J., Yu Z.-T., Gao H.-L., Zou Z.-G., Zheng C., Huang W. // Chem. Eur. J. 2013. Vol. 19. P. 6340. doi: 10.1002/chem.201300146
  12. Wang X.-B., Zheng H.-Q., Rao H., Yao H.-C., Fan Y.-T., Hou H.-W. // Appl. Organometal. Chem. 2016. Vol. 30. P. 638. doi: 10.1002/aoc.3481
  13. Wang J., Li C., Zhou Q., Wang W., Hou Y., Zhang B., Wang X. // Dalton Trans. 2016. Vol. 45. P. 5439. doi: 10.1039/C5DT04628A
  14. Helm M.L., Stewart M.P., Bullock R.M., DuBois M.R., DuBois D. // Science. 2011. Vol. 333. P. 863. doi: 10.1126/science.1205864
  15. Mazzeo A., Santalla S., Gaviglio C., Doctorovich F., Pellegrino J. // J. Inorg. Chim. Acta. 2020. Vol. 517. P. 119950. doi: 10.1016/j.ica.2020.119950
  16. Selvamani T., Anandan S., Ashokkumar M. In: Micro and Nano Technologies. Nanoscale Graphitic Carbon Nitride. Elsevier, 2022. P. 17. doi: 10.1016/B978-0-12-823034-3.00002-9
  17. Romero N.A., Nicewicz D.A. // Chem. Rev. 2016. Vol. 116. P. 9629. doi: 10.1021/acs.chemrev.6b00057
  18. Fukuzumi S., Lee Y.-M., Nam W. // Springer Handbook of Inorganic Photochemistry. 2022. P. 1385. doi: 10.1007/978-3-030-63713-2_46
  19. Dolganov A.V., Tanaseichuk B.S., Moiseeva D.N., Yurova V.Y., Sakanyan J.R., Schmelkova N.S., Lobanov V.V. // Electrochem. Commun. 2016. Vol. 68. P. 59. doi: 10.1016/j.elecom.2016.04.015
  20. Долганов А.В., Баландина A.В., Чугунов Д.Б., Тимонина А.С., Люкшина Ю.И., Ахматова А.А., Юдина А.Д., Шиндина В.В., Жирнова В.О., Климаева Л.А., Осипов А.К. // ЖОХ. 2020. Т. 90. Вып. 7. С. 1040
  21. Dolganov A.V., Balandina A.V., Chugunov D.B., Timonina A.S., Lyukshina Yu.I., Akhmatova A.A., Yudina A.D., Shindina V.V., Zhirnova V.O., Klimaeva L.A., Osipov A.K. // Russ. J. Gen. Chem. 2020. Vol. 90. N 7. P. 1229. doi: 10.1134/s1070363220070099
  22. Kotani H., Ono T., Ohkubo K., Fukuzumi S. // Phys. Chem. Chem. Phys. 2007. Vol. 9. P. 1487. doi: 10.1039/b612794k

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023