Features of the Formation of Halide Complexes of Platinum Metals with Co(III) Ammonia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Crystalline powders of double complex salts of various compositions have been isolated by the interaction of solutions containing [Co(NH3)6]3+ cations and [MHal4]2− (M = Pt(II), Pd(II); Hal = Cl, Br) anions. It has been experimentally found that the replacement of chloride ions in the Co–Pd system with bromide ions leads to the formation of compounds with a Co : Pd = 2 : 3. In the presence of sulfate ions, crystals of a compound of the composition {[Co(NH3)6](SO4)2[Co(NH3)6]}[PdBr4]. The compound was isolated for the first time and characterized by elemental analysis, X-ray diffraction, IR spectroscopy, and X-ray diffraction (CCDC 2355175). The structures were investigated by the DFT/PBE0 method in the def2 tzvp basis. Molecular graphs of compounds have been constructed and indicators of non-valent interactions have been identified as part of the topological analysis of electron density. Their energies and the total effect, which can have a strong electrostatic and induction effect on the formation of crystal structures, are approximately estimated.

全文:

受限制的访问

作者简介

E. Volchkova

MIREA – Russian Technological University

编辑信件的主要联系方式.
Email: volchkovaev@bk.ru
俄罗斯联邦, 78, Vernadsky Ave., Moscow, 119571

T. Buslaeva

MIREA – Russian Technological University

Email: volchkovaev@bk.ru
俄罗斯联邦, 78, Vernadsky Ave., Moscow, 119571

N. Paninа

Saint Petersburg State Institute of Technology (Technical University)

Email: volchkovaev@bk.ru
俄罗斯联邦, 26, Moskovsky Ave., Saint Petersburg, 190013

A. Churakov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: volchkovaev@bk.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991

Ya. Lobkov

MIREA – Russian Technological University

Email: volchkovaev@bk.ru
俄罗斯联邦, 78, Vernadsky Ave., Moscow, 119571

I. Dedyukhin

Ural Federal University

Email: volchkovaev@bk.ru
俄罗斯联邦, 19, Mir St., Ekaterinburg, 620062

参考

  1. Sobhani S., Zare H., Sansano J.M. // Sci. Rep. 2021. V. 11. P. 17025. https://doi.org/10.1038/s41598-021-95931-6
  2. Revathy T.A., Sivaranjani T., Boopathi A.A. et al. // Res. Chem. Intermed. 2019. V. 45. P. 815. https://doi.org/10.1007/s11164-018-3645-0
  3. Korableva A., Piyanzina I., Gumarov A. et al. // Mater. Proc. 2022. V. 9. P. 1. https://doi.org/10.3390/materproc2022009022
  4. Xu Guang-Rui, Han Congcong, Zhu Ying-Ying. et al. // Adv. Mater. Interfaces. 2018. V. 5. P. 1701322. https://doi.org/10.1002/admi.201701322
  5. Xing Cheng, Yueshuai Wang, Yue Lu. et al. // Appl. Catal., B: Environmental. 2022. V. 306. P. 121112. https://doi.org/10.1016/j.apcatb.2022.121112
  6. Peng Zhao, Xiaoqian Qin, Haibo Li. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 21124. https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp02746d
  7. Kozhukhova A.E., S.P. du Preez, Bessarabov D.G. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1079. https://doi.org/10.1016/j.ijhydene.2023.09.119
  8. Миргород Ю.А., Борщ Н.А., Стороженко А.М. и др. // Тонкие химические технологии. 2023. Т. 18. № 5. С. 471. https://doi.org/10.32362/2410-6593-2023-18-5-471-481
  9. Борисов Р.В., Белоусов О.В., Лихацкий М.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. C. 1537. https://doi.org/10.31857/S0044457X23600573
  10. Васильков А.Ю., Воронова А.А., Наумкин А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 885. https://doi.org/10.31857/S0044457X23600147
  11. Бородин А.О., Филатов Е.Ю., Плюснин П.Е. и др // Журн. Неорган. химии. 2024. Т. 69. № 9. C. 1308. https://doi.org/10.31857/S0044457X24090115
  12. Домонов Д.П., Печенюк С.И. // Вестн. Кольского научн. центра РАН. 2020. Т. 12. № 3. С. 5. https://doi.org/10.37614/2307-5228.2020.12.3.001
  13. Тупикова Е.Н., Платонов И.А., Бондарева О.С. и др. // Кинетика и катализ. 2021. Т. 62. № 6. С. 803. https://doi.org/10.31857/S0453881121060186
  14. Печенюк С., Домонов Д., Гостева А. // Рос. хим. журн. 2020. Т. 64. № 1. С. 45. https://doi.org/10.6060/rcj.2020641.6
  15. Гаркуль И.А., Задесенец А.В., Плюснин П.Е. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1371. https://doi.org/10.31857/S0044457X20100062
  16. Asanova T.I., Asanov I.P., Yusenko K.V. et al. // Mater. Res. Bull. 2021. V. 144. Р. 111511. https://doi.org/10.1016/j.materresbull.2021.111511
  17. Юсенко К.В., Васильченко Д.Б., Задесенец А.В. и др. // Журн. неорган. химии. 2007. Т. 52. № 10. С. 1589.
  18. Asanova T., Asanov I., Zadesenets A. et al. // J. Therm. Anal. Calorim. 2016. V. 123. P. 1183. https://doi.org/10.1007/s10973-015-5002-5
  19. Pechenyuk S.I., Zolotarev А.А., Gosteva A.N. et al. // J. Mol. Struct. 2017. V. 1147. P. 388. https://doi.org/10.1016/j.molstruc.2017.06.099
  20. Avisar-Levy M., Levy O., Ascarelli O. et al. // J. Alloys Compd. 2015. V. 635. P. 48. https://doi.org/10.1016/j.jallcom.2015.02.073
  21. Волчкова Е.В., Чураков А.В., Пятахина Е.С. и др. // Коорд. химия. 2019. Т. 45. № 3. С. 186. https://doi.org/10.1134/S0132344X19030101
  22. Волчкова Е.В., Буслаева Т.М., Лютикова Е.К. и др. // Платиновые металлы в современной индустрии, водородной энергетике и в сферах жизнеобеспечения будущего “Берлин – ПМ’2010”: материалы IV Междунар. конф. Берлин, 2010. С. 348.
  23. Справочник. Синтез комплексных соединений металлов платиновой группы / Под ред. Черняева И.И. М.: Наука, 1972. 616 с.
  24. Ключников Н.Г. Руководство по неорганическому синтезу. М.: Химия, 1997. 316 с.
  25. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  26. Sheldrick G.M. // Acta. Crystallogr., Sect C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  27. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158. https://doi.org/10.1063/1.478522
  28. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  29. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 16. Revision C.01. Gaussian Inc., Wallingford CT. 2019.
  30. Debefve, Pollock// Phys. Chem. Chem. Phys. 2021. V. 23. P. 24780. https://doi.org/10.1039/D1CP01851E
  31. Панина Н.С., Буслаева Т.М., Фишер А.И. // Кинетика и катализ. 2023. T. 64. № 5. С. 589. https://doi.org/10.31857/S0453881123050076
  32. Panina N.S., Klyukin I.N., Buslaeva T.M. et al. // Inorganics. 2023. V. 11. Р. 384. https://doi.org/10.3390/inorganics11100384
  33. Panina N.S., Klyukin I.N., Fischer A.I. et al. // Int. J. Hydrogen Energy. 2025. V. 105. P. 267. https://doi.org/10.1016/j.ijhydene.2025.01.189
  34. Miertus S., Scrocco E., Tomasi J.М. // J. Chem. Phys. 1981. V. 55. № 1. P. 117. https://doi.org/10.1016/0301-0104(81)85090-2
  35. Tomasi J., Persico M. // Chem. Rev. 1994. V. 94. № 7. P. 2027. https://pubs.acs.org/doi/10.1021/cr00031a013
  36. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. P. 154104. https://doi.org/10.1063/1.3382344
  37. Pollak P., Weigend F. // J. Chem. Theory Comput. 2017. V. 13. № 8. P. 3696. https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00593
  38. Rolfes J.D., Neese F., Pantazis D.A. // J. Comput. Chem. 2020. V. 41. P. 1842. https://dx.doi.org/10.1002/JCC.26355
  39. Pantazis D.A., Chen X.-Y., Landis C.R. et al. // J. Chem. Theory Comput. 2008. V. 4. P. 908. https://dx.doi.org/10.1021/ct800047t
  40. Neese F. // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
  41. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. № 22. P. 224108. https://doi.org/10.1063/5.0004608
  42. Neese F., Wennmohs F. Max-Planck-Institut fur KohlenforschungKaiser-Wilhelm-Platz 1, 45470 Mulheim a. d. Ruhr, Germany, ORCA Manual, Version 5.0.1. 2021. P. 775.
  43. Neese F. // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022. V. 12. № 5. P. e1606. https://doi.org/10.1002/wcms.1606
  44. Chemcraft – graphical software for visualization of quantum chemistry computations. Available online: https://www.chemcraftprog.com. (accessed on 16 June 2023).
  45. Bader R.F.W. Atoms in Molecules: A Quantum Theory. Oxford, U.K.: Oxford University Press, 1990.
  46. Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела: учебное пособие для вузов. М.: БИНОМ. Лаборатория знаний, 2014. 495 с.
  47. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  48. Emamian S., Lu T., Kruse H. et al. // J. Comput. Chem. 2019. V. 40. 2868. https://doi.org/10.1002/jcc.26068
  49. Goerigk L., Grimme S. // J. Chem. Theory Comput. 2011. V. 7. № 2. P. 291. https://doi.org/10.1021/ct100466k
  50. Zheng J., Xu X., Truhlar D.G. // Theor. Chem. Acc. 2011. V. 128. P. 295. https://doi.org/10.1007/s00214-010-0846-z
  51. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  52. Omrani H., Cavagnat R., Sourisseau C. // Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy. 2000. V. 56. № 8. P. 1645. https://doi.org/10.1016/S1386-1425(00)00220-1
  53. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. Пер. с англ. М.: Мир; БИНОМ. Лаборатория знаний, 2013, 468 с.
  54. Groom C.R., Bruno I.J., Lightfoo M.P. et al. // Acta Crystallogr., Sect. B. 2016. V. 72. Р. 171. https://doi.org/10.1107/S2052520616003954
  55. Стид Д., Этвуд Д. Супрамолекулярная химия, в 2-х т. / Пер. с англ. под ред. Цивадзе А.Ю., Арсланова В.В., Гарновского А.Д. М.: ИКЦ “Академкнига”, 2007.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of [Co(NH3)6]3+ cation and [PdCl4]2- and SO42- anions in crystal III. Thermal ellipsoids are given at 50% probability. Disorder components are depicted by open and bold dashed lines. Hydrogen bonds are shown by thin dashed lines.

下载 (241KB)
3. Fig. 2. Layered alternating packing in structure III.

下载 (744KB)
4. Fig. 3. Reciprocal arrangement of disorder components in [PdBr4]2- anion layers. View along the 3rd order axis. The apical Br(1) atoms lying on axis 3 are not shown for clarity.

下载 (122KB)
5. Fig. 4. Optimised structures of molecular formations: (a) - [Co(NH3)6]2[PtCl4]3; (b) - [Co(NH3)6]2[PdBr4]3.

下载 (370KB)
6. Fig. 5. Optimised structure of the molecular formation of {[Co(NH3)6](SO4)2[Co(NH3)6]}[PdBr4].

下载 (304KB)
7. Fig. 6. Molecular graph of the compound {[Co(NH3)6](SO4)2[Co(NH3)6][PdBr4]} (numbered atoms are involved in non-valent H2NH...Br interactions).

下载 (334KB)

版权所有 © Russian Academy of Sciences, 2025